REGENERATION OF AN OCEAN ANTICYCLONE: FROM WARM TO COLD

Sachi Itoh

Center for Earth Surface System Dynamics AORI, UT

Co-authors: I. Yasuda, H. Ueno, T. Suga and S. Kakehi Reference: Itoh et al. (2014, J. Oceanogr.)

Mesoscale Eddies in the ocean

Ocean

Atmosphere

Mesoscale eddies

(e.g. Anticyclonic ring)

Elevated surface (high pressure) and anticyclonic circulation

Low pressure and cyclonic circulation (anticyclonic for highs)

Warm-core Rings (warm anticyclonic

Gulf Stream warm-core rings¹ **Kuroshio warm-core rings** Warm (and saline) core water 500m-**East Australian** Current eddies² ²Ridgway & Hill (2009) 1000m -1http://pages.jh.edu/~dwaugh1/gallery_ocean.html 4iN 42N

Cold-core Rings

around subtropical western boundary currents

http://marine.coastal.edu/gulfstream/

Mesoscale EDDIES EAst of Japan

Question

* What happens after the northward propagation?

Cooled down by the atmosphere?

Broken into small patches?

Mixed up with subarctic water?

Information was limited for disappearance processes of the Kuroshio warm-core rings within the subarctic gyre

Purpose

To examine the fate of the aged rings in the subarctic gyre

Profiling Float Observations

R/V Hakuho maru

- Three profiling floats into a WCR off Hokkaido
 - The main float was deployed aboard R/V Hakuho maru
 - Parking at 500/1000 m, profiling temperature and salinity and transmitting the data every 5 days

Shipboard observations

Contour: SSHA

Color: SSTA

Satellite Images

Temperature and

Sep 2010

Regeneration from warm to cold

cold, fresh and Low-pv water

Why the warm anticyclone could become an anticyclone even after the cold water intrusion?

500

Maybe because the cold water had low potential vorticity

Like partial merger of like-signed vortices!

Cold anticyclonic ring

originating from the Sea of Okhotsk (Itoh & Yasuda, 2010JPOb)

Contour: SSHA

Color: SSTA

Epilogue:

Fate of the ring and Implications for

A possible cycle of anticyclones in the Kuroshio-Oyashio transition area

- 1. propagate northward,
- 2. become a cold anticyclone,
- 3. propagate southward, and then,
- 4. merge to newly generated warm anticyclone (s)

Effective water exchange via meridional propagation and regenerations of anticyclones

