
Transport and survival of larvae of pelagic fishes
in Kuroshio system region estimated with

Lagrangian drifters
Sachihiko ITOH* AND Shingo KIMURA

Fisheries Environmental Oceanography Group, Ocean Research Institute, The University of Tokyo,
Nakano, Tokyo 164-8639, Japan

ABSTRACT: Transport and survival of larvae of pelagic fishes in the Kuroshio system region were
studied using Lagrangian drifter data recorded from 1990 to 2003. A large portion of the drifters from
the Kuroshio area south of Japan spread around the Kuroshio Extension up to 170°E, while some
moved south to the offshore area of the Kuroshio because of a recirculation gyre. The monthly mean
eastward movement from areas south of Japan was approximately 800–900 km, which was smaller
than previous numerical estimates. The results of a survival model assuming optimal temperatures for
larvae suggest that surface waters during the observation period were too warm for larval Japanese
sardine, which has an optimal temperature of 16°C, and the adult abundances did not increase during
the observation period. In contrast, the spawning ground temperatures and transport conditions from
an area south-west of Japan in April–June matched the requirement for the larval Japanese anchovy,
which has an optimal temperature of 22°C. The combined effects of temperature variations due to
seasonality and water mass mixing are suggested to play an important role in determining the
environmental temperatures that occur in an area.
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INTRODUCTION

In the Kuroshio–Oyashio current system, the main
spawning grounds of Japanese sardine Sardinops
melanostictus and Japanese anchovy Engraulis
japonicus are located in the East China Sea and
the southern coastal area of Japan around the
Kuroshio1–3 (Fig. 1). Eggs and larvae of these
species are advected by the Kuroshio and some-
times reach the Kuroshio Extension region east of
Japan by the end of the larval stage.4,5 However, the
transport is not deterministic but stochastic.
Synoptic-scale recirculations formed south of the
Kuroshio and the Kuroshio Extension6 and mesos-
cale frontal eddies are likely to be significant for
retention and dispersal. The frontal eddies cause
large environmental variability during larval trans-
port and play an important role in determining
larval food availability.7–9

Stock abundances of the Japanese sardine and
anchovy show dramatic out-of-phase fluctuations

on a multidecade time scale. For example, the
catch of the Japanese sardine along the Pacific
coast of Japan was approximately 2.8 ¥ 106 t in
1988, but it drastically decreased to approximately
50 000 t in 2003. A similar but opposite fluctuation
occurs in the anchovy stock: the catch in 2003 was
six times larger than in 1998. Since fluctuations
occur simultaneously with other sardine and
anchovy species in the California Current and
Humboldt Current systems, a relationship to large-
scale climatic change has been suggested as a
fundamental cause.10,11 In the Kuroshio–Oyashio
current system, strengthening and weakening of
the Aleutian low causes cold and warm water envi-
ronments, respectively. Dominance of the Japa-
nese sardine occurs in cold periods,12 and the
highest abundances of the Japanese anchovy occur
in warm periods. These observations indicate that
climate change is affecting the recruitment of these
pelagic fishes.

In accordance with the stock fluctuations, the
distribution of the spawning grounds also changes
for both the sardine and anchovy. The spawning
grounds are confined to coastal waters when stock
abundances are low, but they spread into offshore
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regions over the Kuroshio in periods when stock
abundances are increasing.2,13–16 In the latter case,
large numbers of larvae are transported down-
stream to the Kuroshio Extension, and the larvae
gradually migrate north to the Kuroshio–Oyashio
transition region.2,17,18 The larvae transport to the
Kuroshio Extension and the subsequent northward
migration is inferred to be significant in maintain-
ing high stock abundances, since the collapse of
the large sardine stock in the 1980s was caused by a
high mortality rate in these life stages until age 1,
despite high egg abundance.19

The summer feeding grounds of the sardine and
anchovy until they are one-year old are located in
the Oyashio and the Kuroshio–Oyashio transition
region, where high primary production usually
occurs (Fig. 2). It is considered that larval transport
to the Kuroshio Extension is favorable for juveniles
that reach this region, but migration success is
lower for those transported to the south of the
Kuroshio, which is isolated from the regions of high
productivity, especially in summer. Kasai et al.20

examined the transport and survival of sardine
eggs and larvae using an idealized Kuroshio system
model and suggested that those transported to
the Kuroshio Extension contributed significantly to
one-year recruitment. It was concluded that not
only the destination of the transported larvae, but
also the variability in the mortality rate during
transport, was important for recruitment success.
Noto and Yasuda21 found that there is a significant
correlation between the mortality coefficient
(equal to –logeS, where S is the survival rate) of
early life stages of Japanese sardine from post
larvae to age 1 and the winter sea surface tempera-
tures (SSTs) in the Kuroshio Extension and its
southern recirculation area. They reported that the
SST reflects the mixed layer depth (MLD), and the
winter MLD is a precondition of food availability
for larvae transported to that area in spring.

Since the mortality rate usually decreases as
the life stage progresses, the growth rate becomes
an important factor for recruitment success.22–24

Takasuka and Aoki25 investigated the growth rates
of Japanese anchovy larvae in different water
masses using otolith microstructure analysis and
found its optimal temperature range was 21–22°C.
In contrast, the range for the Japanese sardine
was 15–16°C.26 This large difference suggests that
the biological response to temperature change is
completely different between the two species.
Considering the mortality rates and growth rates
of typical marine fish larvae in other regions,27–29

temperature is the primary index of larvae sur-
vival conditions, including food availability as
suggested by Noto and Yasuda.21 The temperature
history during larval transport in the Kuroshio
system region has not been observed, except for
a few days of tracking of sardine larvae.30,31

However, the observation period of these studies
was too short relative to the larval period. It gen-
erally takes the Japanese sardine and anchovy
several weeks from hatching to yolk absorption,
and another one to two months to metamorphose
into juveniles.2,32 Transport over this time scale
(hereafter referred to as a subseasonal time scale)
has only been described individually, and the
Lagrangian environmental history has not been
previously presented.

In this study, we analyzed drifting buoy data
obtained by the Global Drifter Program (GDP) and
the World Ocean Circulation Experiment Surface
Velocity Program (WOCE–SVP), which both
include the position, time, and sea surface tem-
perature for several months in many cases. The
main aims of this study are to present subseasonal
transport and Lagrangian temperature variability
from the Kuroshio area and to examine larval sur-
vival, focusing on the Japanese sardine and the
Japanese anchovy.

Fig. 1 Schematic illustration of
the Kuroshio–Oyashio system
region, including recirculation
gyres south of the Kuroshio and
the Kuroshio Extension, and
spawning and feeding grounds of
Japanese sardine and Japanese
anchovy when the stock abun-
dances were high. H, Hokkaido;
S, Shikoku; K, Kyushu. 120oE  130oE  140oE  150oE  160oE  170oE
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MATERIALS AND METHODS

Lagrangian drifter data

The satellite-tracked Lagrangian drifter data used
in this study were collected, processed and
archived by the Atlantic Oceanographic
and Meteorological Laboratory and Marine

Environmental Data Services under GDP and
WOCE–SVP. The drifters consisted of a surface
buoy equipped with a satellite transmitter, a ther-
mometer and other sensors, and a 15-m drogue
below the buoy with a drop-off sensor, to follow
the ocean currents isolated from the direct action
of waves and wind. It is considered that a depth of
15 m can represent the flow that advects larvae of
Japanese sardine and Japanese anchovy, exhibit-
ing diurnal vertical migratory behavior in an epi-
pelagic layer. As for Japanese sardine larvae,
Konishi33 found the distribution in the range of
0–50 m depth, which supports the above consid-
eration. Even if larvae are distributed in deeper
layers, the difference is thought to be minor
because of the averaging effect of the migration,
unless the distribution exceeds the main ther-
mocline depth of several hundreds of meters
where vertical shear of oceanic currents becomes
significant. The six-hour interval data of the loca-
tion, sea surface temperature (SST), velocity, and
drogue status (either connected to the surface
buoy or dropped off) were processed and interpo-
lated using the method described by Hansen and
Poulain.34 Temperature measurements were accu-
rate to 0.1°C.35

Fifty drifters that passed through the spawning
ground of the Japanese sardine and anchovy in
the North Pacific Ocean from January to June,
which covers the spawning season, were selected
(Fig. 3). The target area was divided into six sub-
areas for statistical analyses of the drifter move-
ment. The starting points for the analyses were
selected as the middle of each month (daily mean
position at 0:00 hours on the 16th day), if they
were in the target area. This resampling time scale
is longer than the typical Lagrangian integral
time scale of 2–10 days in oceanic areas.36 In this
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analysis, 113 Lagrangian data sets were used for a
30-day period, 92 for a 60-day, and 75 for a 90-day
period. Because the synoptic-scale path of the
Kuroshio south of Japan was straight (nonlarge-
meander)37 throughout this period, except for
the year 1990, ensemble mean and deviation of
movement from one subarea was assumed to be
caused by mean flow and eddy components,
respectively. Note these eddy components
included those caused by temporal path varia-
tions such as propagation of small meanders on
the quasi-stable path.38

Monthly mean heat fluxes of NCEP/NCAR
reanalysis39 from 1990 to 2003 and monthly clima-
tology of mixed-layer depth40 were used to estimate
contribution of heating and cooling on tempera-
ture variation at the Kuroshio area south of Japan
(30–35°N, 130–140°E) and the Kuroshio Extension
(30–35°N, 145–155°E).

Optimal temperature model

Consider survival from time t0 to t1, which corre-
sponds to the start and end of a life stage. The sur-
vival rate is then given as equation 1:

S
N
N

mdt
t

t

1
1

0 0

1= = −{ }∫exp (1)

where m is the mortality rate, and N0 and N1 are
abundances at t0 and t1, respectively.

Variables t0 and t1 have the following relationship
(equation 2) with growth rate g for a given param-
eter DL representing growth during a model life
stage (for example, increase in body length):

∆L gdt
t

t
= ∫ 0

1
(2)

Note that m and g are independent of the growth
level (for example, body length) during the stage.
Considering the dominant effect of temperature on
the survival, we assumed dependence of the vari-
ables m and g only on temperature as:

m m T T= × [ − ) [ ]( )0
2 22exp o s (3a)

g g T T= × −[ − ) [ ]( )0
2 22exp o s (3b)

where m0, g0, To and s are the minimum mortality
rate, maximum growth rate, optimal temperature,
and the width of the optimal temperature window,
respectively. If m0, g0 and the temperature are con-
stant during the stage, the effects of m and 1/g on

survival are the same. However, variability in tem-
perature has stronger effects on the former: an
instantaneous high mortality rate can be fatal,
whereas an instantaneous low growth rate causes
little extension of the stage duration.

In this study, transport and survival of
larval patches in an early life stage were examined
using drifter data. The patches were considered
hatched at the start points of the drifters, and
passively transported with them because the
swimming ability of larvae is negligible com-
pared with the oceanic flows. The egg period of
1–3 days was not considered in the survival
model. The duration of the model life stage was
specified by Dt0 = DL/g0 (minimum duration from
hatching to a standard growth level). Substituting
this formulation, equation 2 is simplified as
equation 4:

∆t T T dto
t

t

0
2 22

0

1= − −( ) ( ){ }∫ exp s (4)

The integrands can be interpreted as nondi-
mensional growth rates whose maximum is 1.
Three cases, To = 16, 19, and 22°C, were examined
with fixed other parameters of Dt0 = 30 days,
m0 = 0.2/day and s = 3°C. Temperature ranges
were selected with reference to the spawning
temperature (11–21°C for Japanese sardine2 and
15–26°C for Japanese anchovy41), and the optimal
growth temperature (16.2°C for Japanese sardine25

and 22.0°C for Japanese anchovy26), and the
minimum duration was chosen regarding typical
time scale of larval stages of approximately one to
two months. As for the minimum mortality rate of
0.2/day, we referred to estimated mortality rates
of 0.34/day for Japanese sardine in the Kuroshio
area42 and 0.25/day (range 0.14–0.36/day)16 for
Japanese anchovy in the Kuroshio Extension and
the Kuroshio–Oyashio transition region. Integra-
tions of growth and mortality were carried out
for 92 larval patches for 60 days at most, until
time integration of nondimensional growth rate
reached Dt0 (equivalent to when integration of
growth rate reached DL). Sixty days calculation
was long enough for survival examination
because the survival rates after 60 days were
0.00006% at most, far lower than maximum sur-
vival rate of approximately 0.25% at 30 days. Even
though detailed biology such as fertility, mortality
after larval stages, and predation pressure is
needed to evaluate number of recruits, results of
different optimal temperature cases in our model
were simply compared because the drastic regime
shift from Japanese sardine to Japanese anchovy
was related to the high mortality rate of Japanese
sardine in early life stages.19
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RESULTS

Movement and Lagrangian
temperature variability

A large portion of the drifters from the Kuroshio
area south of Japan and the southern part of the

East China Sea spread around the Kuroshio Exten-
sion up to 170°E, while some moved south to the
offshore area of the Kuroshio (Fig. 4). Anticyclonic
circulation south of the Kuroshio or the Kuroshio
Extension suggested that the drifters were trapped
in recirculation gyres. Ekman transport due to
westerly winds might be responsible for the
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southward shift from the main path of the Kuro-
shio Extension to the recirculation gyres, although
seasonality of wind stress was not clearly reflected
in the movements of the drifters. On the northern
side of the Kuroshio Extension, several drifters
intruded northward from spring (May) to summer
(June) (Fig. 4e,f). It is inferred that these move-
ments were caused by the northward movement of
warm eddies and streamers.43 Drifters in the north-
ern part of the East China Sea moved north-east,
and some of them entered the Sea of Japan, except
for the one that moved north-west to the Yellow
Sea.

Although subseasonal movements showed a
stochastic tendency, Lagrangian temperatures
were more deterministic. Initial temperatures in
the Kuroshio area south of Japan were approxi-
mately 17–22°C in winter (January–March) and
20–25°C in spring (April–June), and a seasonal fluc-
tuation caused by atmospheric heating or cooling
was observed. However, it is recognized that the
trajectories of drifters exhibiting stochastic behav-
ior also had a significant effect. There was a cooling
tendency for drifters that moved from the Kuroshio
area to the Kuroshio Extension, but the effect of
seasonal heating was dominant for those that
stayed in areas south of the Kuroshio. As the drift-
ers moved into the Kuroshio Extension, tempera-
tures fell greatly in winter (Fig. 4a–c), and the rise
was suppressed in spring (Fig. 4d–f). Figure 5
shows the initial temperature and mean variation
of Lagrangian temperatures from initial tempera-
ture during the first 30 days in the North Pacific,
and heat flux contribution of Eulerian temperature
variation estimated from heat flux and mixed layer
depth. The initial temperature was approximately
20°C in January, and it dropped to its lowest level
of 18–19°C in February and monotonically rose
to 23–24°C in June (Fig. 5a). Part of the seasonal
warming or cooling pattern seen in the heat flux
contribution of Eulerian temperature variation
(Fig. 5c) appeared in the Lagrangian one with a
mean amplitude of approximately 1.8°C (Fig. 5b).
Calculating mean variation of drifters moving
more and less than 5°E separately, we estimated
that the mean cooling effect caused by eastward
movement and the warming effect by retention
seen in Figure 4 were -1.0 and +0.6°C, respectively.
The largest difference in the variation between the
two groups was 3.3°C, which occurred from May to
June (Fig. 5b). Because temperature rise (fall) esti-
mated from heat flux and mixed layer depth were
smaller (larger) in the Kuroshio area south of Japan
than in the Kuroshio Extension, this difference was
not caused by heating or cooling.

To obtain the characteristics of subseasonal
transport from various spawning grounds,

ensemble means and standard deviations of
the movement of drifters from six subareas (Fig. 3)
for periods of 30, 60 and 90 days are shown in
Figure 6. Transport from the Kuroshio area south of
Japan (S3 and S4) at 30 days was advective.
Mean ! standard deviation of eastward move-
ments were 680 ! 520 km (or 880 ! 480 km after
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drifters in the North Pacific (n = 81) and (c) contribution
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eliminating those that had a westward component)
and 810 ! 510 km from S3 and S4, respectively,
and generally downstream to the Kuroshio Exten-
sion and its southern flank. However, they were
dispersed from mean flow after 60 days by recircu-
lation gyres as shown in Figure 4. The distribution
of drifters from S4 slightly shifted southward after
60 days, and they spread widely in the recirculation
region of the Kuroshio Extension, which is also
seen for those from S5. Although a similar move-
ment occurred for some from S3, others moved
offshore to the south of 30°N (Fig. 3), and the stan-
dard deviation ellipses were skewed and elongated.

Migration of drifters from the offshore area of the
Kuroshio (S2) was less advective (the mean east-
ward movement was 60 ! 410 km at 30 days) than
those from S3 and S4, and most of the drifters
stayed south of Japan in the period of 60 days
(Fig. 4b). The dispersive tendency of drifters from
north of the Kuroshio Extension (S6) seems to be
caused by eddy activities including temporal vari-
ability of the axis of the Kuroshio (Fig. 4e,f). In the
East China Sea and the water around the Nansei
Islands (S1), the means and standard deviations
were given for three subgroups divided for each
period by their destination (Fig. 6a): (i) the North
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Pacific (east of 130°E or south of 25°N); (ii) the Sea
of Japan (north of 35°N); and (iii) S1 including its
eastern side. Transport to the North Pacific
occurred mostly by the main stream of the Kuro-
shio in 30 days, and offshore movement crossing
the stream became significant after two months, as
seen from S3, which is a downstream subarea along
the Kuroshio (Fig. 6c). Drifters in the northern area
of the East China Sea moved to the Sea of Japan
after 60 days.

Survival by optimal temperature model

Survival rates and destinations of larval patches
from the spawning grounds that were estimated
by the model of optimal temperatures of 16°C
(Case I), 19°C (Case II) and 22°C (Case III) are
shown in Figures 7–9. In Case I, survival rates were
generally low and no patch had a survival rate
greater than 0.1%, except for two patches from the
northern East China Sea in January and April, and
one from the east of the Izu Islands. Surface water
temperatures in the western North Pacific during
the observation period of 1990–2003 were higher
than 16°C in the whole area of this study. Survival
rates were greatly improved in Case II. There were
high survival rates for larvae put in January, Feb-
ruary and March from areas along the Kuroshio
south of Japan (Fig. 8a–c). As a result, 18 patches
had a survival rate higher than 0.1% in these three
months. Transport of these survivors was mainly
eastward, which was the downstream direction
along the axis of the Kuroshio, whereas some from
south of Shikoku (S3) and the southern flank of the
Kuroshio Extension (S5) showed a slight south-
ward or westward movement, as shown in Fig-
ures 4 and 6. In Case III, there were 11 patches
with a survival rate higher than 0.1% for the whole
period (Fig. 9). Seven patches were in the first four
months (January–April) from waters around the
Nansei Islands (southern part of S1, and S2), which
stayed there after the stage, but the others in the
last three months (April–June) were from the Kuro-
shio south of Shikoku (S3), the Kuroshio Extension
(S5), or the northern East China Sea (S1). Even
though the high survival rates (> 0.1%) were lower
than for Case II, this case shows that a larger
number of cases of intermediate survival (0.01–
0.1%) appeared from the south of Japan (S3 and
S4) and the Kuroshio Extension (S5) in the last
three months (April–June).

As the feeding grounds of juveniles are located
north of the Kuroshio Extension, where high pro-
ductivity occurs even in summer (Fig. 2), the des-
tination of larval patches should be close to this
high production area for migration success in juve-

nile stages. In Case II, transport of model patches
with high survival rates was mainly toward the
region along the axis of the Kuroshio or the Kuro-
shio Extension region from January to March,
which is located on the southern periphery of the
high production area (Fig. 8) and hence, preferable
for juvenile survival. On the other hand, in Case III,
model patches at 25–30°N from February to April
with high survival in the model larval stage were far
from the area of high production. Thus, they would
not reach the feeding ground in the later stages
(Fig. 9). Therefore, we narrowed the good spawn-
ing grounds for juvenile survival in Case III to a
region south-east of Japan (S4 and S5) in April, May
and June

DISCUSSION

The spawning grounds of Japanese sardine and
Japanese anchovy spread across a wide area with
high abundance, and dense egg patches were often
observed in areas south of Shikoku and Kyushu
(S3) and the waters south-east of Japan (S4 and S5),
which are their main spawning grounds. The sub-
seasonal transport fields obtained in this study
suggest that the movement of larvae from these
areas was mainly toward the Kuroshio Extension
and its southern flank, but some from S3 were
advected by a recirculation gyre south of Shikoku.
Heath et al.44 showed by particle-tracking experi-
ments that the duration of transport to the Kuro-
shio Extension from an area corresponding to S3
in this study (~1000 km) in 1993 and 1994 was
approximately two to three weeks, which was
shorter than the results of our study (880 ! 480 km
in 30 days for those moving along the Kuroshio
from S3). In a previous model,44 the flow field
reconstructed from the observations was not time-
dependent and the retention effect of mesoscale
eddies was underestimated. This difference in
transport duration becomes a problem when esti-
mating survival, because it has a close relation to
migration success in later stages. In the Kuroshio
Extension and its southern flank, transport
became less advective and the larval patches
would be dispersed in wide areas along the current.
It is inferred that the surface water masses of the
stream are transported toward a recirculation gyre
by the combined effects of Ekman transport and
frontal disturbances, and are mixed in the gyre by
chaotic advection.

It was observed that the surface temperatures of
the main spawning grounds were approximately
18–20°C in winter and 20–24°C in spring, and the
mean Lagrangian temperature variability from
those areas showed a seasonal amplitude of
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approximately 1.8°C, which was caused by atmo-
spheric heating or cooling. However, cooling and
warming of approximately -1.0 and +0.6°C was
recorded by drifters that moved eastward for more
and less than 5°E, respectively. Since the eastward
movement corresponds to transportation from
areas south of Japan to the Kuroshio Extension

region but heating or cooling showed the opposite
tendency (Fig. 5c), it is considered that horizontal
mixing with cold water originating from the
Oyashio, across the front of the Kuroshio Exten-
sion, is responsible for the cooling.7 In contrast,
retention in a recirculation gyre south of Japan
seems to contribute to warming through mixing
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Fig. 7 Survival rates and transport of model larval patches estimated from the middle of (a) January, (b) February, (c)
March, (d) April, (e) May and (f) June for Case I (To = 16°C). End points (!): rates are shown by the area of (!). Position
after 60 days if the duration of the stage was >60 days (¥). Arrows show movements in the model life stage.
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with relatively warm water. A combination of sea-
sonality and cooling (warming) caused by mixing
results in strong (weak) cooling in winter and
weak (strong) warming in spring, respectively
(Fig. 5b).

The survival model showed that high survival
and preferable transport took place for many
larval patches in Case II (To = 19°C), but survival
was generally low in Case I (To = 16°C) and tem-
poral and spatial conditions were limited in

Case III (To = 22°C). Considering the observed
spawning and optimal growth temperatures, the
optimal temperatures for the survival of the Japa-
nese sardine and anchovy were 16°C26 and 22°C,25

respectively. Although it has been proposed that a
decrease in the abundance of Japanese sardine in
the late 1980s was related to the warming of the
western North Pacific,21 our model results suggest
that warm water temperatures in the oceanic
spawning grounds could have prevented an
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Fig. 8 Same as Figure 7 but for Case II (To = 19°C).
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increase in stock abundance of the Japanese
sardine from 1990 to 2003 (Fig. 5a). The tempera-
tures of the spawning grounds were approxi-
mately 20°C in January and 18–19°C in February
and March. In Case II, atmospheric cooling
lowered the mean temperature to close to the
optimal temperature of 19°C for January, while the
temperature was kept around 19°C through
the model larval period for February and March

by the effect of retention (Fig. 5b), resulting in a
high survival rate. Some data from February and
March marked almost the highest survival of
larvae in the model. As for Case III, which has
simulated survival of the Japanese anchovy, a
preferable spawning ground was found in an area
south-east of Japan (S4 and S5) in spring. It is
implied that the balance of seasonal (atmo-
spheric) heating and mixing with cold water kept
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Fig. 9 Same as Figure 7 but for Case III (To = 22°C).
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the environmental temperatures at an optimal
level (Fig. 5b), and contributed greatly to main-
taining the stock abundance of the Japanese
anchovy at a high level. It is considered that the
successful transport in Cases II and III represent
typical survival scenarios of cool and warm water
species in the Kuroshio system region, respec-
tively (Fig. 10). Although the Japanese anchovy
was considered a warm water species in the
observation period of 1990–2003, we assume that
the Japanese sardine was a cool water species in
the relatively cold period from the late 1970s to
1980s.

In this study, we showed the subseasonal trans-
port from the Kuroshio system region using
Lagrangian drifter data, and identified temporal
and spatial conditions of spawning and transport
for the Japanese sardine and anchovy. Even though

selection of a season and an area will determine
the temperature history to some degree in
advance, retention and mixing caused by recircu-
lation gyres and frontal disturbances of the Kuro-
shio and the Kuroshio Extension caused stochastic
temperature variability. Therefore, large-scale cli-
matic change may be the primary cause of fluctua-
tions in stock abundance; however, bimodality of
paths of the Kuroshio south of Japan and variability
of intensity of the recirculation of the Kuroshio
Extension are also important, because they will
alter the retention time scale and water exchange
across the fronts.
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