ウルップ海峡における大振幅内部波の砕波

伊藤 幸彦・ 田中 祐希(東大院・理)・ 長船 哲史 (JAMSTEC)・

安田 一郎・八木 雅宏・金子 仁・近田 俊輔 (東大大気海洋研)・

西岡 純 (北大低温研)・Yuri N. Volkov (FERHRI)

千島列島の「浅い」海峡における強混合

混合強度は時間変化大きいが、 最強混合はシル風下側、大幅な密 度面降下を伴う(大振幅内部波)

● ウルップ海峡:

ブッソル海峡 (≥1500 m)南西に 位置する浅い (~100 m)海峡

- 流量は小さいが混合は非常に強い
 - → 水塊形成のホットスポット

Cross-slope distance [km]

Unsteady / arrested lee waves 非定常風下波 / 捕捉風下波

アムチトカ海峡の断面観測 非定常(伝播性)風下波として説明

Nakamura et al. (2010)

ルソン海峡の連続観測 捕捉風下波として記述 Klymak et al. (2012)

ウルップ海峡で観測された 大振幅内部波との関連性は?

目的

Question

- 大振幅内部波砕波は千島海峡の主要な乱流励起源か?
- 大振幅内部波はどのような構造を持ち、 どのように励起されるのか?
- 大振幅内部波と非定常風下波、捕捉風下波の関係は?

- ▶ウルップ海峡再観測
- ▶3次元モデルデータ解析

観測&モデル

- クロモフ号2010年航海 (Kh10) 50°N
 - ▶ ウルップ太平洋側1日観測(小潮)^{48°N}
 - ▶ 乱流計+CTD/LADCP
- ●モデル
 - 潮流で駆動した3次元モデル (Tanaka et al, 2010)
 - ▶ 水平1km,鉛直20 m
 - ▶ 静水圧平衡 (厳密な意味での風下波は出ない)

密度・乱流強度の1日変化(観測)

上層流速 (↑オホーツク向き)

- 太平洋向きの流れで 密度面深化
- ・密度面が深くなった ところで強混合 (ε ~ 10^{-5} W/kg, K $_{
 ho}$ ~ 10 m 2 s $^{-1}$)

過去2回の大振幅 内部波と同様

密度・乱流強度の1日変化(モデル)

上層流速 (↑オホーツク向き)

- 太平洋向きの流れで 密度面深化
- 密度面が深くなったところで強混合

観測とほぼ同様

密度偏差・流速時間 (90m深) の 1日変化(モデル)

潮汐で励起される「風下波」

- 潮汐下で「風下波」出現条件:固有周波数ω = |kU| > ωtide
 - → 非定常風下波の条件 (Nakamura et al. 2000)と同じただし、ω ≠ |kU| ± ωtide (非定常風下波の周波数)
- 千島海峡の場合
 - U ≠ 順圧潮流, but地形性捕捉波による流れ
 - 水平波数k ≠ シル幅, but
 相互作用が起こる頂上付近の幅
 ω = (h/l)U/m ~ 有効aspect比 × N
 - → 捕捉風下波 (Klymak et al. 2010)
 - モデル結果 7.8 h < 日周期
- 増幅条件 => 次スライド

Hydraulically supercritical?

Hibiya (1986)

潮流が内部波位相速度を上回る (Fr ≥ 1) 時に内部波が増幅

等深線を横切る潮流振幅と 非回転第1モード位相速度を比較

$$C_{回転} = (C_{非回転}^2 + f^2/k^2)^{1/2}$$

浅い海峡を中心に 最大フルード数 >> 1

モデル散逸率分布 (鉛直積算)

おわりに: Answers to the Questions

- 大振幅内部波砕波は千島海峡の主要な乱流励起源か?
- → Yes. エネルギー散逸量の大きい浅い海峡で顕著
- 大振幅内部波はどのような構造を持ち、 どのように励起されるのか?
- ▶ 急峻なシルの風下側に形成
- ▶ 順圧潮流 => 地形に捕捉されたsupercritical流
 - => 振幅の増幅 => 砕波
- 大振幅内部波と非定常風下波、捕捉風下波との関係?
 - ▶ 現象としては同じ。潮汐周期内の風下波と解される。

水温・塩分・密度

擾乱の(自由)伝播

標準化された海面高度偏差と流速

擾乱伝播方向の断面

密度偏差&流速水平分布(290 m深)

鉛直積算散逸率&鉛直平均流

Unsteady / arrested lee waves 非定常風下波 / 捕捉風下波

アムチトカ海峡の断面観測 (非定常風下波として説明)

Nakamura et al. (2010)

ルソン海峡の連続観測 (捕捉風下波として記述) Klymak et al. (2012)

