The 4th International Workshop on Nonhydrostatic Models

Nov. 30 (Wed) - Dec. 2 (Fri), 2016 The Prince Hakone Lake Ashinoko, Hakone, Japan

Program

November 30 (Wed)

13:30-13:40 Masaki Satoh: Opening

Deep convection: Chair: <u>Eigo Tochimoto</u>

- 13:40-14:00 <u>Hisashi Yashiro</u>, Yoshiyuki Kajikawa, Yoshiaki Miyamoto, Tsuyoshi
 Yamaura, Ryuji Yoshida, and Hirofumi Tomita
 Resolution dependence of the diurnal cycle of precipitation over land in the tropics simulated by a global cloud permitting model
- 14:00-14:20 <u>Didier Ricard</u>, Antoine Verrelle, Christine Lac, and Nicolas Rochetin Representation of turbulence in simulations of deep convective clouds
- 14:20-14:40 <u>Christopher Moseley</u>, Cathy Hohenegger, Peter Berg, and Jan O. Haerter Intensification of convective extremes driven by cloud–cloud interaction
- 14:40-15:00 <u>Marat Khairoutdinov</u> Statistics of clusters of tropical convection in global cloud-resolving simulations of aqua-planet with SAM
- 15:00-15:30 Break

Deep convection, meso: Chair: Hisashi Yashiro

15:30-15:50 Thomas Schwitalla

Convection permitting latitude belt simulation with the WRF model

- 15:50-16:10 <u>Kengo Matsubayashi</u>, Tabito Hara, Kohei Aranami, and Kohei Kawano An update of convection scheme in 5km resolution operational system
- 16:10-16:30 <u>Eigo Tochimoto</u>, Sho Yokota, Hiroshi Niino, and Wataru Yanase
 Mesoscale vortex that caused marine accidents due to a sudden gusty
 wind in the southwestern part of the sea of Japan on 1 September 2015
- 16:30-16:50 <u>Teruyuki Kato</u> Influence of horizontal resolution on structure changes of atmospheric stratification in the 2015 Hiroshima heavy rainfall

16:50-18:00 Poster display

18:00 Reception (Suruga)

December 1 (Thu)

Dynamical cores/numerical schemes: Chair: Tomoki Miyakawa

- 8:40-9:00 <u>David Randall</u>, Ross Heikes, and Celal Konor A global vector vorticity model on a geodesic grid
- 9:00-9:20 <u>Chien-Ming Wu</u> Development of a Taiwan full-physics vector vorticity equation model (VVM)
- 9:20-9:40 John L. McGregor Cubed-sphere modelling activities at CSIRO
- 9:40-10:00 <u>Kazushi Takemura</u>, Keiichi Ishioka, and Shoichi Shige Development of a non-hydrostatic atmospheric model using the Chimera grid method for a steep terrain
- 10:00-10:20 Kohei Kawano, Kohei Aranami, Tabito Hara, Kengo Matsubayashi,
 Masami Sakamoto, and Yuji Kitamura
 Improving computational stability with time-splitting of vertical advection considering 3-dimensional CFL condition
- 10:20-10:50 Break

Numerical schemes, MJO/field exp.: Chair: Chien-Ming Wu

- 10:50-11:10 Lian-Ping Wang, Wojciech W. Grabowski, Zhaoli Guo, and Ryo Onishi Development of a mesoscopic simulation method for atmospheric convection
- 11:10-11:30 <u>Yuki Nishikawa</u>, and Masaki Satoh Topographic representation scheme using a thin-wall approximation in terrain-following coordinates
- 11:30-11:50 <u>Chung-Hsiung Sui</u>, Yi-An Chen, and Shu-Yu Hou Simulated convective-radiative properties in the MJO during DYNAMO/CINDY
- 11:50-12:10 <u>Kazuyoshi Kikuchi</u>, Chihiro Kodama, Tomoki Miyakawa, Tomoe Nasuno, and Masaki Satoh Multiscale structure of the MJO: Does it matter?

12:10-13:40 Lunch

MJO/field exp., assimilation: Chair: Kazuyoshi Kikuchi

13:40-14:00 Tomoki Miyakawa

Current status of MJO simulations using NICAM and its 3D-ocean coupled version NICOCO

- 14:00-14:20 <u>Tomoe Nasuno</u> Near real-time forecasts using a global nonhydrostatic model NICAM for field campaigns
- 14:20-14:40 <u>Takemasa Miyoshi</u>, Guo-Yuan Lien, Masaru Kunii, Juan Ruiz, Yasumitsu Maejima, Shigenori Otsuka, Keiichi Kondo, Hiromu Seko, Shinsuke Satoh, Tomoo Ushio, Kotaro Bessho, Hirofumi Tomita, and Yutaka Ishikawa "Big Data Assimilation" for 30-second-update 100-m-mesh Numerical Weather Prediction
- 14:40-15:00 <u>Takuya Kawabata</u>, Hiroshi Yamauchi, Nobuhiro Nagumo, and Ahoro Adachi
 - Development of assimilation methods for polarimetric radar data
- 15:00-15:30 Break
- Assimilation: Chair: Takuya Kawabata
- 15:30-15:50 <u>Yasutaka Ikuta</u> Impact of flow-dependent assimilation using adjoint model including 3-ice
 - microphysics scheme
- 15:50-16:10 <u>Takumi Honda</u>, Guo-Yuan Lien, Yasumitsu Maejima, Kozo Okamoto, and Takemasa Miyoshi
 Assimilating all-sky himawari-8 satellite infrared radiances: A case of Kanto-Tohoku heavy rainfall in 2015
- 16:10-16:30 <u>Koji Terasaki</u>, Keiichi Kondo, Takemasa Miyoshi Assimilating satellite radiances with the NICAM-LETKF system
- 16:30-18:00 Poster display
- 19:00 Banquet (Fukuman-en)

December 2 (Fri)

Assimilation, cloud schemes: Chair: <u>Yosuke Sato</u>

- 8:40-9:00 <u>Shunji Kotsuki</u>, Koji Terasaki, Hisashi Yashiro, Hirofumi Tomita, Masaki Satoh, and Takemasa Miyoshi Model parameter estimation using ensemble data assimilation: A case with the nonhydrostatic icosahedral atmospheric model NICAM and the global satellite mapping of precipitation data
- 9:00-9:20 <u>Wojciech W. Grabowski</u> Modeling condensation in nonhydrostatic cloud-scale models
- 9:20-9:40 <u>Hugh Morrison</u> An accurate, efficient method for calculating hydrometeor advection in multi-moment bulk and bin microphysics schemes
- 9:40-10:00 <u>Akihiro Hashimoto</u>, Ryohei Misumi, and Narihiro Orikasa Examination of the classification of hydrometeor types in a bulk microphysics scheme
- 10:00-10:20 <u>Yoshinori Yamada</u> Development of a two-moment three-ice bulk microphysical model for ice
- 10:20-10:50 Break
- Cloud schemes, clouds/aerosols/LES: Chair: Junshi Ito
- 10:50-11:10 Chia Rui Ong

Water droplet simulation by the immersed boundary method

- 11:10-11:30 <u>Kozo Nakamura</u>, Yasushi Fujiyoshi, Kazuhisa Tsuboki, and Naomi Kuba Development of a bulk parameterization scheme of warm rain using bin scheme model results
- 11:30-11:50 <u>Mike Pritchard</u>, Hossein Parishani, Chris Bretherton, and Marat Khairoutdinov

Towards low cloud permitting superparameterization

 11:50-12:10
 Yousuke Sato

 Current-generation global climate models inevitably underestimate

 pollutant transports to the Arctic

12:10-13:40 Lunch

Clouds/aerosols/LES: Chair: Akihiro Hashimoto

- 13:40-14:00 <u>Tatsuya Seiki</u>, Chihiro Kodama, Masaki Satoh, Tempei Hashino, Yuichiro Hagihara, and Hajime Okamoto
 Effect of topographical resolution on cirrus clouds using a high-resolution GCM
- 14:00-14:20 <u>Junshi Ito</u> Numerical simulation of a local valley wind "Hijikawa-Arashi"
- 14:20-14:40 <u>Akira T. Noda</u>, Tatsuya Seiki, Masaki Satoh, and Yohei Yamada High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulations
- 14:40-15:00 <u>Hiromasa Nakayama</u>, and Tetsuya Takemi Large-eddy simulation of a diurnal cycle of atmospheric turbulent boundary layer flows over an urban area by coupling with a meso-scale meteorological simulation model
- 15:00-15:20 <u>Takanobu Yamaguchi</u>, Graham Feingold, and Vincent E. Larson Framework for improvement by vertical enhancement: a simple approach to improve low and high level clouds in large scale models

15:20-15:30 Closing

Posters

<u>Seiya Nishizawa</u> , Sachiho A. Adachi, Yoshiyuki Kajikawa, Tsuyoshi
Yamaura, Kazuto Ando, Ryuji Yoshida, Hisashi Yashiro, and Hirofumi
Tomita
Decomposition of the large-scale atmospheric state driving downscaling
<u>Sachiho A. Adachi</u> , Fujio Kimura, Hiroshi G. Takahashi, Masayuki Hara,
Xieyao Ma, and Hirofumi Tomita
How does utilization of high-resolution SST give impact to regional climate
simulation?
Shun-ichi Watanabe, and Hiroshi Niino
An idealized numerical experiment of Japan sea polar air mass
convergence zone
Hoang-Hai Bui, Eriko Nishimoto, and Shigeo Yoden
Effects of environment shear on convective systems in a minimal model of
QBO-like oscillation
Hiromu Seko
Introduction of the project 'Innovative numerical weather predictions and
advanced weather disaster prevention based on damage-level estimation'
and data assimilation experiment of radio occultation refractivity data by
using a mesoscale LETKF system
Tomoki Ohno, and Masaki Satoh
Sensitivity studies of cloud responses on SSTs in RCE experiments using
a high-resolution global nonhydrostatic model
Didier Ricard, and Antoine Verrelle
Simulations of deep convection as a testbed for two non-hydrostatic
models
<u>Ryuji Yoshida</u> , Tsuyoshi Yamaura, Sachiho A. Adachi, Seiya Nishizawa,
Hisashi Yashiro, Yousuke Sato, and Hirofumi Tomita
A computationally cost effective online nesting procedure for regional
atmospheric/climate models
<u>Hiroyasu Kubokawa,</u> Masaki Satoh, Takashi Arakawa, and Hiroyasu
Hasumi
Development of the stretch-atmosphere and ocean model to study air-sea
interaction associated with tropical cyclone
Shin Fukui, Toshiki Iwasaki, Kazuo Saito, Hiromu Seko, and Masaru Kunii

downscaling
neric motion
riguchi
and CloudSat
ine shallow
ity simulated in
isa Yoshimura,
suno,
⁄oshiaki
Project for
ya Seiki, and
km mesh
and Bjorn
mparison