Statistics of clusters of tropical convection in global cloud-resolving simulations of aqua-planet with SAM

Che the

Marat Khairoutdinov

School of Marine and Atmospheric Sciences Institute for Advanced Computational Science Stony Brook University Long Island, NY, USA

> 4th International Workshop on Nonhydrostatic Models Japan, Nov30-Dec2 2016

Evidence from paleoclimate reconstructions suggests that the tropical climate has been essentially stable with just a few degrees variations in SSTs

Radiative-Convective Instability Change in radiative heating rates due to instantaneous uniform reduction of water vapor by 20%

Emanuel et al (2014)

Self-Aggregation of Tropical Convection Total humidity Precipitation Outgoing Infrared x, km x, km 300 x, km Outgoing Infrared Total humidity Precipitation

x, km

mm/day

100 120 140 160 180 200

X kim

1200 -

y, km

300 -

x, km

mm

100 120 140 160 W/m²

Self-aggregation of convection in RCE over large domain with no rotation

Dependence on SST: "On/off switch"

Aggregated-convection state has, on average, drier troposphere than random-convection state. Dryer Atmosphere means smaller green-house effect, that is cooler surface.

OBS Tobin et al (2013)

SAM

Self-Organized Criticality (SOC) Hypothesis (Khairoutdinov and Emanuel 2010)

- SOC Hypothesis: Tropical convection (and SST) is attracted to the transition critical state (critical SST) between mostly aggregated and mostly disaggregated regimes.
- Consequence: If tropical convection is currently indeed in near-SOC state, the climate sensitivity of Tropics to anthropogenic warming may be low (strong negative feedback due to aggregation of clouds).

Cloud-resolving Near-Global[™] simulation of equatorially-centered channel on Aquaplanet

Bretherton and Khairoutdinov (JAMES 2015)

Set-Up

- SAM 6.10.6; Single-Mom Micro; CAM3 radiation
 - Zonally symmetric APE QOBS SST; CTL and +4K
 - Domain: 20,480 x 10,240 km²; top at 27 km
- $\Delta x = \Delta y = 4$ km, zonally periodic
- Solid walls at N and S; equator at the center
- Perpetual Equinox
- Lat-varying insolation with diurnal cycle
- Lat-varying Coriolis parameter
- Spin-up from uniform state for 100 days with $\Delta x = \Delta y = 20$ km
- 60-day continuation run with $\Delta x = \Delta y = 4$ km
 - Analyzed: last 40 days

٠

Cloud Cover

46º S

46º N

Brightness Temperature (Tb) Blue colors - cold cloud tops

40 days of 3-hourly snapshots = 320 cloud scenes

Cloud Cover 4-km grid

Tb<240K averaged over 50-km grid (to be comparable with CLAUS data)

Identification of Individual Clusters

Statistics of Clusters in 10°x10° regions

LessAggregatedMoreTb < 240K, 50-km resolution</td>Following Tobin et al (2013)

N=I

Water Vapor More aggregation \checkmark Dryer troposphere

SSM/I Tobin et al (2012)

Outgoing Radiation

No strong effect of aggregation on net outgoing radiation

Absorbed Radiation

Strong effect of aggregation on net absorbed radiation and, hence, on climate?

PDF of Cluster Area

Large increase (by a factor of 10) of number of super-clusters in warmer climate. Virtually no change in number of small and medium clusters.

Cloud-resolving Near-Global[™] simulation of equatorially-centered channel on Aquaplanet

Set-Up

- Constant SST=300K;
- Domain: 40,000 x 10,240 km²; top at 27 km
 - $\Delta x = \Delta y = 20$ km and 4 km, zonally periodic
 - Constant insolation: 651 W/m2, cosz=52 degrees

RCE on SST=300K Near-Global Aquaplanet

20km, 240 days

RCE on SST=300K Near-Global Aquaplanet

4 km simulation (Filtered Wave-1)

MJO initiation: both radiative cooling and surface fluxes are important.

MJO propagation: radiation maintains MJO, while surface enthalpy fluxes are shifted I/4 of wavelength from center of MJO to facilitate its eastward propagation.

Global RCE over Aquaplanet Lat-Lon grid: Δx = 4 km (EQ), Δt=10s 10240 x 5120 x 34 grid 89.5° N Performance: 1 wall-clock hour/simulated day (5120 cores)

Take-home Message

 Aggregation or clustering of convection in Tropics can increase in warmer climate, which can be a powerful negative feedback on global warming.