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Geodesic Grid

No. of grid Avg grid

Grid points N distance ¢ (km)
GO 12 6699.1
G1 42 3709.8
G2 162 1908.8
G3 642 961.4
G4 2562 481.6
G5 10242 240.9
G6 40962 120.4
G7 163842 60.2
G8 655362 30.1
G9 2621442 15.0
G10 10485762 7.53
G11 41943 042 3.76
G12 167772162 1.88
G13 671 088 642 0.94

Non-hydrostatic regime

| will describe a new non-hydrostatic dynamical core intended for
use as a global cloud-resolving model. The model uses a geodesic
(hexagonal-pentagonal) grid.



The model uses the Unified System of Arakawa & Konor.

Fully compressible system

Unified System
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pP=p,+0p  p=p,+dp
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Horizontal momentum equation:
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Horizontal momentum equation:
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Vertical momentum equation:
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Vertical momentum equation:
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Thermodynamic equation:
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Thermodynamic equation:
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Continuity equation:
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Continuity equation:
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is assumed




Strengths & Weaknesses of the

Unified System

Strengths:

Filters vertically propagating sound waves
Does not need a basic or reference or mean state

Is as accurate as the fully compressible system for non-
acoustic modes

Is easy to implement into an existing quasi-static model
Can easily be “switched” to the quasi-static system

Conserves energy

Weaknesses:
Requires solution of a three-dimensional elliptic system



Choice of proghostic variables

With the continuous Unified System, there are u,v,h
two degrees of freedom in the wind for each
degree of freedom in the mass field.
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With the continuous Unified System, there are u,v,h
two degrees of freedom in the wind for each
degree of freedom in the mass field.

On geodesic C grids, the horizontal wind field
has three degrees of freedom for each degree of
freedom in the mass field.

This mismatch gives rise to computational

modes in the wind. Computational modes are
bad.

The unstaggered A grid also suffers from
computational modes, for a different reason.

0,h

The unstaggered Z grid has no computational modes. 0,



Strengths & Weaknesses of the Z-grid

Strengths:

® No computational modes because
matched degrees of freedom

® Prognostic pseudo-scalars, rather
than vectors

® Excellent dispersion properties for
Inertia-gravity waves

® Direct prediction of the vertical
component of the vorticity

Weaknesses:

® Requires solution of a pair of
two-dimensional elliptic
equations at each level on each
time step



Elliptic equation for the pressure

When the Z-grid model is combined with the Unified System, it
leads to a three-dimensional elliptic equation for the pressure:
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Elliptic equation for the pressure

When the Z-grid model is combined with the Unified System, it
leads to a three-dimensional elliptic equation for the pressure:

0 00T .
\Y -(pqscpHVHéyt) + G—Z(pqscpﬁ E) = forcing
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(_) =(—) =0 Neumann boundary conditions
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Convergence is slow with the Neumann boundary conditions.

Prediction of vorticity allows us to escape this problem.



Vorticity across scales

Large-scale motions are Small-scale motions are
controlled by the vertical controlled by the horizontal
component of the vorticity. vorticity vector.



Vorticity across scales
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Large-scale motions are Small-scale motions are
controlled by the vertical controlled by the horizontal
component of the vorticity. vorticity vector.

Realistic simulation of the vorticity is key on both large and small scales.
This motivates to predict the vorticity directly.

The wind field can be “reconstructed” by integration.



Vector Vorticity Model (VVM)

Jung & Arakawa, 2008

The VVM predicts the
horizontal vorticity vector
on a C-grid
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Elliptic equation for the vertical velocity

With the VVM, a three-dimensional elliptic equation is solved for the vertical
velocity, rather than the pressure:

0| 1 3
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H aZ _pqs aZ (pqs )_ H H
we =w, =0 Dirichlet boundary conditions

Convergence is fast.



Elliptic equation for the vertical velocity

With the VVM, a three-dimensional elliptic equation is solved for the vertical
velocity, rather than the pressure:

ol 1 9 )
APy az(p“w)_ @

we =w, =0 Dirichlet boundary conditions

Convergence is fast.

The “forcing” on the right-hand side is the curl of the horizontal vorticity.
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A geodesic VVM?

The VVM predicts the tangential component of
the horizontal vorticity on each cell wall. It uses

the C grid.

Like the horizontal wind vector, the horizontal
vorticity vector has two degrees of freedom for
each degree of freedom in the mass field.

On geodesic C grids, the horizontal vorticity
vector has three degrees of freedom for each
degree of freedom in the mass field.

This is the same problem that we ran into with
momentum prediction on the geodesic grid.

We will use the same solution.



Curl Curl

Z-grid model Curl Curl

W, k'(VHXVH) * I k-(VwaH)
V-V, Vi oy




Curl Curl

Z-grid model Curl Curl
=k (V xV ) rEk'(VwaH)
V V Vi oy
. . / dw
Since V3 ‘W, = 0 we can write V, 0, =- ; <
<

So, what we actually predictare w, and [ =k- (VH X (DH) :



Curl Curl

Z-grid model Curl Curl
=k (V x V. ) I‘Ek°(VmeH)
. . Jdw
Since V3 "W, = 0  we can write VH "Wy =— p <
<

So, what we actually predictare w, and [ =k- (VH X (DH) :




What is the curl of the vorticity?

The vorticity has a curl when the vortex lines make loops or rings, analogous to the
circular structures sometimes formed by the wind field when the velocity has a curl.

Vortex loops or rings surround jets, plumes and thermals.

The horizontal vorticity also has a curl in a field of cloud streets or “rolls,” because in
that situation the horizontal vorticity changes sign in the direction perpendicular to
the vorticity vector.



The Gamma Equation
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The Gamma Equation

or 10
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How it works

dw
Starting from V@, =— 5 £ and I‘Ek'(VmeH),
<

we can diagnose @y by solving a pair of elliptic equations,

just like we do with the Z-grid model.

Once @ has been determined, the logic follows the VVM exactly.



Unstaggered grids

u,v,h

A
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Unstaggered grids
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Strengths & Weaknesses of Curl Curl

Strengths:

No computational modes (because 2 grid)

Excellent dispersion properties for inertia-gravity waves (because {2 grid)

® Direct prediction of the vertical component of the vorticity, which controls
large-scale dynamics

® Direct prediction of the curl of the horizontal vorticity, which controls
small-scale dynamics

® Predicts pseudo-scalars, rather than vectors (because {2 grid)

® Guarantees the non-divergence of the three-dimensional vorticity vector
(because VVM)

Weaknesses:

® Requires solution of a pair of 2D elliptic equations at each level on each
time step

® Requires solution of a 3d elliptic equation, but with “friendly” Dirichlet
boundary conditions
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Height, m

Height, m

ENDGame results

DCMIP test 3.1, theta prime along the Equator, K
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Curl Curl results
DCMIP test 3.1, theta prime along the Equator, K




Held-Suarez test

Curl-Curl, 40 K grid, days 1000 to 2000
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Closing Remarks

® This talk has been about structural issues.

Structural design comes first. The ideas discussed in
this talk form the concrete and steel of the model, on
which everything else depends.

The forms of the various operators also have to be
specified, of course, and it’s important to do a good job
with that. Ross Heikes has developed some very
accurate and flexible operators for use with Curl Curl.

Computational performance and scaling are also
important. Curl Curl scales well.



Extra slides
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Multigrid scaling
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Dispersion of Inertia-Gravity Waves
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Dispersion of Rossby Waves

Fully Compressible, Unified and

Pseudo-Incompressible

Quasi-Hydrostatic Anelastic
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