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Background & Motivation

< Mesoscopic methods based on the Boltzmann equation to
solve complex turbulent flows have been rapidly developed
over the last 30 years

< But very limited applications to geophysical flows

Overall objectives

< Simulate high-Rayleigh number convection flows using
DUGKS

<> How to treat unresolved local gradients?

Controlled local numerical diffusion (TVD, monotone, ....)
Explicit SGS model

<> Compare DUGKS and Navier-Stokes based solvers

in terms of accuracy, numerical stability, and efficiency



Thermal convection flows
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DUGKS: Discrete Unified Gas Kinetic Scheme

<> Based directly on the Boltzmann equation with BGK collision model

< Gas Kinetic Scheme combined with certain good features of LBM (simplicity
and low numerical dissipation)

<> The kinetic advection is treated as fluxes through cell interfaces

< Fluxes are computed using distributions at the half time step, with streaming
and collision coupled together (low numerical dissipation)

<> A much more general approach than LBM
— Key advantages: all flow types, all Kn and Ma
— Non-uniform grid

K Xu and J-C Huang, J. Comp. Phys. 229, 7747 (201)
ZL Guo, K Xu, RJ Wang, PRE 88, 033305 (2013); PRE 91, 033313 (2015)
P Wang, S Tao, ZL Guo, Computers & Fluids, 120 70-81 (2015).



DUGKS: finite-volume discretization for hydrodynamic velocity
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s=e = T /; flow, D3Q19

Updating rule for cell-center distribution functions
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Mid-point Trapezoidal
Constructing fl.’”o'5 (xs) : Integrate from ¢ to ¢ +0.5dt along the characteristic path
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Similar transformations as in LBM are
x = cell center, x_= cell boundary used to make all explicit

K Xu and J-C Huang, J. Comp. Phys. 229, 7747 (201)
ZL Guo, K Xu, RJ Wang, PRE 88, 033305 (2013); PRE 91, 033313 (2015)



DUGKS: Boundary conditions
— all done to distributions at cell interfaces

No-slip wall: bounce-back //

In out

Free-slip wall: mirror reflection /\

in out

Fixed temperature
h;+0'5 ( xs) _ h2+0.5 ( xs) + 2WaTwall

Zero heat flux
h;+0'5 ( xs) _ hZ+0.5 ( xs)



DNS of turbulent flows using DUGKS

Homogeneous isotropic turbulence in a periodic box
Wang P, Wang L-P, Guo ZL, 2016, Comparison of the LBE and DUGKS methods
for DNS of decaying turbulent flows. Phys. Rev. E., 94, 043304

Turbulent channel flow [non-uniform mesh with large grid aspect ratios]
Bo YT, Wang P, Guo ZL, Wang L-P, 2016, Parallel implementation and validation
of DUGKS for three-dimensional Taylor-Green vortex flow and turbulent channel
flow, Computers & Fluids, submitted.

DNS of thermal convection in an enclosure

Wang L-P, Wen X, Geneva N, Wang P, Guo ZL, 2016, Simulations of high-
Rayleigh-number convection flows using mesoscopic methods, Discrete
Simulation of Fluid Dynamics 2016.

Ra~ 10'1in 3D

MPI, non-uniform mesh, external forcing, boundary conditions



The physical problem: Rising and evolution of a warm dry bubble

Background
p,=10, 6 =300K, AT=2K
2
AT cos(ﬂ) r <1000 m
0=0,+; 2000
0, otherwise

Centered at 1040 m height

Domain: 3200 m H, 5000m V

H=1000 m, Pr=0.71, v=1.57x10"
_ PrGATH’

2
1%

Ra =1.89x10"

Periodic BC in horozontal
Vertical boundaries: zero heat flux & stress free



Evolution at a given grid resolution of dx =10 m
No numerical limiter applied

0 min 5 min 10 min 15 min



How about increasing the grid resolution?
No numerical limiter applied
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Maximum local temperature gradient and maximum local vorticity

-> Rapid evolution of the smallest spatial scale
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The van-Leer slope limiter (the monotonized central limiter)

Slope 1n a cell for field reconstruction

) U;+1 B Uj U;+1 B U;—l 0 U; B U;—l (Forrn 1)

o" = minmod , ,
/ Ax 2Ax Ax

where
Sign(al)min(‘al‘,‘az‘,‘%‘), if sgn(a1)=sgn(a2)=sgn(a3)

0, otherwise

mlnmod(al,az,a3) = {

(Form 2)
Variation

B. van Leer, J. Comput. Phys. 23, 276 (1977).



Time =12.0 min, dx = 10 m, comparison of T field

h r PPM-20S, 12 min
I B 6’[0.0, 2.0; 0.2 K]

Piecewise parabolic method
No limiter van Leer limiter Carpenter et al (1990)

Carpenter et al., 1990, Monthly Weather Rev. 118: 586 — 612. 4



Time =16.0 min, dx = 10 m, comparison of T field

PPM-208, 16 mino\J
- o [0.0,2.0; 0.2 K]

Piecewise parabolic method

No limiter van Leer limiter Carpenter et al (1990)

15



Codes to be compared

NCAR Grabowski: 2"-order finite difference code with
MPDATA (the multidimensional positive definite advection
transport), set to constant background density

JAMSTec Onishi: atmospheric background density
WAF2nd: 2"-order Weighted-Averaged Flux method with
SUPER-BEE flux limiter

WS5th: Wicker-Skamarock 5%-order upwind scheme



The center of the thermal
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Vertical profiles at 5 min
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Vertical profiles at 10 min
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Vertical profiles at 15 min
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Summary

Demonstrated the feasibility of using DUGKS for high Ra convection flows
— DUGKS has low numerical diffusivity and provides accurate solution for
convection flow
— DUGKS code i1s stable even when the flow is not resolved
— When the flow is unresolved, local oscillations occur
— Numerical limiter help suppress oscillations

At later times, the solution could depend sensitively on the treatment of the
advection term, details of the numerical limiter, grid resolution efc., or even
how grids are set up relative to the center of the bubble

— How do we develop benchmark solutions at later times?

Potential benefits: fast scalable computation, low numerical dissipation, ....

Next steps
— Directional splitting may be tested
— Better slope / flux limiter scheme: MPDATA, WENO

— Atmospheric background density / temperature





