EarthCARE Workshop 2022, Online, Feb 16–18, 2022

Evaluation of cloud micro- and macrophysical properties in the MIROC6 with A-Train observations and COSP simulator

OTakuro Michibata¹ and Kentaroh Suzuki²

¹Graduate School of Natural Science and Technology, Okayama University, Japan ²Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Thanks to: X. Jing (U. Michigan, USA), N. Hirota (NIES, Japan), T. Takemura (Kyushu Univ., Japan), H. Okamoto (Kyushu Univ., Japan), T. Ogura (NIES, Japan), G. Cesana (GISS, USA), MIROC developer team

tmichibata@okayama-u.ac.jp

- What can be done using satellite observations to constrain the model uncertainty?
- How can we improve model biases in cloud and precipitation processes using a simulator?

Simulations using MIROC6-SPRINTARS were executed with the SX-Aurora supercomputer system of the National Institute for Environmental Studies, Japan. This study was supported by JSPS KAKENHI Grant Numbers JP19K14795 and JP19H05669.

Common biases in GCMs

Various common biases among GCMs, and still suffering...

- "Too frequent and too light" rain formation (Stephens et al., 2010)
- "Too few" low-cloud bias (Nam et al., 2012)
- "Too strong" cloud response to aerosol perturbations (M. Wang et al., 2012)

Developing cloud-precipitation processes in models using satellite information

Diagnostic-vs-Prognostic precipitation

Most CMIP5/6 GCMs

- Most GCMs treat precipitation diagnostically
 - instantaneously removed from the atmosphere
 - overestimate of the magnitude of ACI
 - bias in warm rain frequency and intensity

Diagnostic-vs-Prognostic precipitation

Most CMIP5/6 GCMs

Michibata et al. (JAMES'19)

- Prognostic precipitation in MIROC6
 - mass and number mixing ratios of rain (q_r, N_r) and snow (q_s, N_s)
 - precipitation in the atmosphere across model timesteps
 - improved representation of radiation by considering precipitating hydrometeors

Other GCMs including prognostic precipitation CAM MG2/3; ECHAM6-HAM; GISS-ModelE3; ECMWF-IFS; HadGEM3; E3SM

Improved warm-rain formation and ACI

Michibata and Suzuki (GRL'20)

- Improved "too frequent" warm rain bias in the PROG scheme – time-evolution of the raindrop size, by controlling the relative contribution of the autoconversion and accretion depending on the cloud regime
- Improved "too strong" ACI in PROG, but not in DIAG

Mechanisms of the weakening ERFaci

Diagnostic precipitation aerosol⁺ => cloud water⁺ => stronger SW ERF_{aci} (cloud lifetime effect)

<u>Prognostic precipitation</u>
 1) Liquid microphysics (Michibata and Suzuki, *GRL*'20)
 aerosol[↑] => cloud water[↑] => stronger SW ERF_{aci}
 accretion[↑] => droplet number ↓ => weakening of cloud lifetime effect

2) Ice microphysics (Michibata et al., ACP'20) aerosol↑ => cloud water↑ => stronger SW ERFaci cloud water↑ => riming↑ => weakening of cloud lifetime effect (Snow-induced ACI buffering)

CALIPSO-GOCCP cloud fraction

still large biases, or not?

The underestimation is not always the model bias, but inconsistency of model - simulator. The effect of the treatment of snow on cloud coverage is very large.

Model-vs-Observation inconsistency

- a) Old MIROC scheme w/ default lidar simulator
 - cloud layer is detected by the lidar backscattering from cloud droplet and ice crystals.
 - lidar does not feel raindrop and snowflake because precipitation is instantaneously remove from the atmosphere.
- b) Actual retrieval process (updated lidar simulator)
 - lidar cannot separate ice crystals and snowflake as done in bulk microphysics models.
 - lidar observation partly includes the snow layer as the cloud layer.
- Note: this is currently not the official version of the COSP

CALIPSO-GOCCP cloud fraction

Cloud phase partitioning by temperature

- Supercooled Liquid Fraction (SLF) = Liquid / (Liquid + Ice)
- ► The impact of lidar update on cloud-phase partitioning is also significant.
- The denominator is increased by a part of snow detected as ice cloud.
 - apparent liquid fraction is decreased.
 - If other GCMs incorporate prognostic precipitation, same problem will occur.
 - Underestimating SLF means higher potential of ice-to-liquid phase change.
 - larger negative cloud feedback and smaller climate sensitivity (Tan et al, 16)

Summary and next step

Recent advances in cloud and precipitation modeling in MIROC6

- How can we improve model biases using satellite simulator?
 - Combined use of MODIS and CloudSat observations helped to understand the discrepancy between model and observation.
 - Prognostic precipitation is one of the desirable solutions for improving compensating errors between precipitation and energy budget.
- Simulator is essential, but must be careful with its configuration. – consistent with model physics and retrieval processes?

EarthCARE simulator into global models

- have to develop process-oriented metrics for model evaluation.
 - Multiple sensor diagnosis (Suzuki et al., 2011)
 - New dimensions from doppler CPR
 - cloud-dynamics interactions; updraft velocity (Takahashi et al., 2017)
 - regime-dependent aerosol-cloud interactions (Zhang et al., 2016)
- cloud-phase partitioning and precipitation-phase partitioning (Kay et al., 2018)
- retrievals of rain, snow, graupel/hail to evaluate model performance