Use of satellite observations for constraining aerosol-cloud-precipitation* processes in global models

Kentaroh Suzuki (U. Tokyo) Thanks to contributions from: X. Jing, H. Hotta, T. Michibata, H. Takahashi

> EarthCARE Modeling Workshop @Online February 16-18, 2022

> > *Warm rain in this talk

Questions

How can process signatures of aerosol-cloud-precipitation interaction be identified in satellite observations?
 What (combination of) observables? In what statistics?
 How can the statistics serve as metrics for process "fingerprint"?

- How can these metrics be applied to evaluate/constrain global models (GCMs/GSRMs)?
- How do the process signatures link to macroscopic/large-scale climate forcing?
- How can new capabilities of EarthCARE add information to these metrics for model constraints?

Statistic #1 - Frequency of CPR reflectivity

Statistic #2 - Radar profile combined with imager variables

Warm rain fraction

Simultaneous measurement of rain/drizzle is critical for model precipitation processes
 Process-sensitive obs information is required for reliable estimates of radiative forcing
 How can EarthCARE Doppler add a "dynamical context" to this?

How could dynamics-microphysics coupling be seen in satellite obs?

Takahashi et al. (QJRMS '17)

Can EarthCARE Doppler help test this?

Aerosol-Cloud Interaction in a global storm-resolving model

The rain process realism in NICAM – Statistic #3

Summary & Some thoughts for EarthCARE

- There exist some metrics that can "probe" some aspects of key cloud-precipitation processes
- The process realism depicted in them is found to correlate with ACI radiative forcing
- The dynamical context would be added by ECARE with Doppler capability to the existing metrics
 How can we do this specifically?
- How about HSRL?
 - Distinguishing aerosols of differing colors (absorbing/scattering)
 Detailed characterization of hydrometeors (ice crystal habits)

How to exploit new ECARE capabilities for extending the existing metrics and devising new ones?

Metrics based on CPR reflectivity 2 - Vertical profiles

A particular statistics of CloudSat+MODIS "fingerprints" the rain formation process
 This offers a direct constraint on model cloud physics, which is linked to ACI forcing
 Recent MIROC development was guided by this to produce new estimates of ACI forcing

Evaluation of water conversion process

Precipitation Category:

Non-precip: $Z_{sfc} < -15 dBZ$ Drizzle: $-15 dBZ < Z_{sfc} < 0 dBZ$

Rain: $0dBZ < Z_{sfc}$

Z_{sfc}: Surface radar reflectivity

NICAM forms rain too fast
 Common bias with GCMs
 Not solved by resolution alone
 Issue of cloud physics