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Adapted Figure 1
from Kotsuki et al. (2019)

Background
• EFSO, which stands for Ensemble Forecast Sensitivity to Observation, is a method that quantifies the impact of assimilated 

observations using ensemble of forecasts. 
• The idea originates from computing the error reduction between two forecasts: baseline forecast vs. DA forecast
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Background (cont.)

True forecast error reduction (per grid point j): ∆𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗
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EFSO estimated forecast error reduction (per grid point j per observation l):

∆𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑗𝑗, 𝑙𝑙
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Linear error growth assumption
Ensemble error covariance approximation

analysis perturbation in obs space
Ensemble forecast perturbation obs - guess localization 

matrix
ensemble

size

• Like any ensemble methods, EFSO also suffers from sampling error due to the use of limited-sized ensemble. 
• As such, covariance localization is used to suppress sampling error.

• With the Fugaku supercomputating resource, we can afford to run large 
ensemble (O(103)) experiments and examine the sensitivity of the accuracy 
of EFSO to ensemble size and the localization length.
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Methodology & Results
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1024 ensemble members
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EFSO computation
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term
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1024, 512, 256, 128, 64, 32
and

test different localization 
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NICAM-LETKF settings:
• GL06 (∆x = 112 km) with 38 vertical levels 
• Cycling interval: 6 hour
• Assimilated obs: Conventional, AMSU-A, MHS
• Localization length: H 400 km; V 0.4 ln(p)
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∑𝐺𝐺𝐿𝐿 ∆𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = ∑𝑗𝑗
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∆𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗

2 ) v.s. ∑𝐺𝐺𝐿𝐿 ∆𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 = ∑𝑗𝑗
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(∆𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑗𝑗

2 )

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 −
[∑𝑘𝑘=1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(∑𝐺𝐺𝐺𝐺 ∆𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑘𝑘
2 − ∑𝐺𝐺𝐺𝐺 ∆𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝑘𝑘

2 )2] ⁄1 2

[∑𝑘𝑘=1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(∑𝐺𝐺𝐺𝐺 ∆𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑘𝑘

2 )2] ⁄1 2

• Comparison in the form of difference between globally 
summed values (used in literature) suggest little sensitivity of 
EFSO to ensemble size.

• Counter-intuitive results were obtained where smaller 
ensemble is more skillfull at EFSO estimations.



More Results using new metrics
Metrics that account for spatial variation are more relevant:
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More Results on Fraction of Beneficial Observations (FBO)
FBO = # beneficial / (# beneficial + # detrimental) 

(this definition excludes neutral obs)

 Larger ensemble size leads to increased FBO

• As # of ensemble members increases, more obs
changes from positive (detrimental) to neutral (no 
impact):  Less detrimental observations, larger FBO.

Averaged absolute corr. coef 

(normalied 𝒀𝒀0𝑎𝑎𝑿𝑿𝑡𝑡|0
𝑓𝑓 𝑇𝑇

)
between AMSU-A NOAA19 

and Temperature @ 500 hPa
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More Results on Localization & Summary
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• When estimating EFSO accuracy in the form of difference between globally 
summed values, it suggests little sensitivity and leads to counter-intuitive result. 

• Considering spatial variation of ∆𝑒𝑒2, three metrics are used: RMSE, Correlation 
coefficient, and Relative skill score:
o Confirm sensitivity: larger ensemble has smaller RMSE and higher correlation
o Ensemble of 128 or more can capture >80 % of 1024 ensemble performance

• We also found that using larger ensemble size in EFSO leads to larger FBO
• To address the evolution of localization, simplying increasing localization length 

does not lead improved EFSO

Applying a dynamical 
localization function 
based on Regression 

Confidence Factor 
(RCF) to EFSO is 
currently under 

investigation.



Thanks for your attention!
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