

「富岳」成果創出加速プログラム 「防災・減災に資する新時代の大アンサンブル気象・大気環境予測」 2021年度成果発表会

Examining the sensitivity of the accuracy of EFSO to ensemble size

Ting-Chi Wu^a, Koji Terasaki^a, Shunji Kotsuki^b, and Takemasa Miyoshi^{a,c,d} ting-chi.wu@riken.jp

^aRIKEN Center for Computational Science, Kobe, Japan

^bCenter for Environmental Remote Sensing, Chiba University, Chiba, Japan

^cRIKEN Interdisciplinary Theoretical and Mathematical Sciences Program, Kobe, Japan

^dRIKEN Cluster for Pioneering Research, Kobe, Japan

Background

- EFSO, which stands for **Ensemble Forecast Sensitivity to Observation**, is a method that quantifies the impact of assimilated observations using **ensemble of forecasts**.
- The idea originates from computing the error reduction between two forecasts: baseline forecast vs. DA forecast

Background (cont.)

True forecast error reduction (**per grid point** *j*): $\Delta e_{true,j}^2 = \left(\overline{x}_{t|0}^f - \overline{x}_{t|-6}^f\right)^T C_{jj} \left(\overline{x}_{t|0,j}^f + \overline{x}_{t|-6,j}^f - 2x_{t,j}^{ref}\right)_j$

Linear error growth assumption
Ensemble error covariance approximation

EFSO estimated forecast error reduction (per grid point j per observation l):

$$\Delta e^2_{EFSO,j,\,l} = \frac{1}{m-1} (\delta \boldsymbol{y}_0)^T_{\,l} \cdot \boldsymbol{\rho}_{l,j} \begin{bmatrix} (\boldsymbol{R}^{-1} \boldsymbol{Y}_0^a \boldsymbol{X}_{t|0}^f)_{l,j} C_{jj} \left(\overline{\boldsymbol{x}}_{t|0}^f + \overline{\boldsymbol{x}}_{t|-6}^f - 2\boldsymbol{x}_t^{ref} \right)_j \end{bmatrix}$$
 ensemble obs-guess localization matrix Ensemble forecast perturbation analysis perturbation in obs space

- Like any ensemble methods, EFSO also suffers from sampling error due to the use of limited-sized ensemble.
 - As such, covariance localization is used to suppress sampling error.
 - With the Fugaku supercomputating resource, we can afford to run large ensemble $(O(10^3))$ experiments and examine the sensitivity of the accuracy of EFSO to ensemble size and the localization length.

Methodology & Results

NICAM-LETKF settings:

- GL06 ($\Delta x = 112$ km) with 38 vertical levels
- Cycling interval: 6 hour
- Assimilated obs: Conventional, AMSU-A, MHS
- Localization length: H 400 km; V 0.4 ln(p)

$$\Delta e_{EFSO,j,l}^{2} = \frac{1}{m-1} (\delta \mathbf{y}_{0})^{T}_{l} \cdot \mathbf{\rho}_{l,j} \left[(\mathbf{R}^{-1} \mathbf{Y}_{0}^{a} \mathbf{X}_{t|0}^{f})_{l,j} C_{jj} \left(\overline{\mathbf{x}}_{t|0}^{f} + \overline{\mathbf{x}}_{t|-6}^{f} - 2 \mathbf{x}_{t}^{ref} \right)_{j} \right]$$

EFSO computation

Compute $Y_0^a X_{t|0}^f$ term using ensemble data sub samples from the 1024 members:

1024, 512, 256, 128, 64, 32 and test different localization lengths $\rho_{l,j}$

$$\sum_{GL} \Delta e_{true}^{2} = \sum_{j}^{N_{grid}} (\Delta e_{true,j}^{2}) \text{ v.s. } \sum_{GL} \Delta e_{EFSO}^{2} = \sum_{j}^{N_{grid}} (\Delta e_{EFSO,j}^{2})$$

$$skill \ score = 1 - \frac{\left[\sum_{k=1}^{N_{cycle}} (\sum_{GL} \Delta e_{true,k}^{2} - \sum_{GL} \Delta e_{EFSO,k}^{2})^{2}\right]^{1/2}}{\left[\sum_{k=1}^{N_{cycle}} (\sum_{GL} \Delta e_{true,k}^{2})^{2}\right]^{1/2}}$$

- Comparison in the form of difference between globally summed values (used in literature) suggest little sensitivity of EFSO to ensemble size.
- Counter-intuitive results were obtained where smaller ensemble is more skillfull at EFSO estimations.

More Results using new metrics

Correlation Coefficient					
0.7552	0.7552 0.8030				
0.8744	0.8769	0.8831			

5

More Results on Fraction of Beneficial Observations (FBO)

FBO = # beneficial / (# beneficial + # detrimental)

(this definition excludes neutral obs)

TABLE 3 The time-mean fraction of beneficial observations (%) in CTRL averaged from 4 to 31 July 2014

Kotsuki et al. (2019)	Verification reference				
Rotsuki et al. (2013)	FT (h)	CTRL	TWIN-EXP	ERA-Interim	AMSU-A
Fraction of beneficial observations (%)	06	58.9	54.4	55.4	51.9
	12	56.1	54.0	54.3	52.2

➤ Larger ensemble size leads to increased FBO

 As # of ensemble members increases, more obs changes from positive (detrimental) to neutral (no impact): Less detrimental observations, larger FBO.

Averaged absolute corr. coef (normalied $\boldsymbol{Y}_0^a \boldsymbol{X}_{t|0}^f$) between AMSU-A NOAA19 and Temperature @ 500 hPa

More Results on Localization & Summary

Localization Length [km]

- When estimating EFSO accuracy in the form of difference between globally summed values, it suggests little sensitivity and leads to counter-intuitive result. Considering spatial variation of Δe^2 , three metrics are used: RMSE, Correlation coefficient, and Relative skill score:
 - Confirm sensitivity: larger ensemble has smaller RMSE and higher correlation
 - Ensemble of 128 or more can capture >80 % of 1024 ensemble performance
- We also found that using larger ensemble size in EFSO leads to larger FBO
- To address the evolution of localization, simplying increasing localization length does not lead improved EFSO

Applying a dynamical localization function based on Regression Confidence Factor (RCF) to EFSO is currently under investigation.

Thanks for your attention!