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Problem A：Discuss how atmospheric circulation changes as global warming due to 
increase of anthropogenic gas such as CO2 in the framework of one-dimensional 
radiative-convective equilibrium following the subsequent questions. 
 
1. Obtain atmospheric structures in radiative equilibrium of a gray atmosphere and 

find dependencies of the surface temperature Ts and the temperature at the bottom 
of the atmosphere T0 on the total optical depth τs. Use the following relation between 
atmospheric optical depth τ and pressure p as 
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where incoming solar flux F = 240 W/m2, α = 4, and τs = 4 for the present atmosphere. 
Search results for the range τs = 1-8. Refer to Satoh (2013) for the gray radiation. 

 
2. Draw moist adiabatic profiles for different values of temperatures at the bottom of 

the atmosphere T0 in the range T0 = 250-320 K with a 5 K interval. Temperature 
lapse rate of moist adiabat and saturation water vapor pressure are given by  
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whereε=Rd/Rv. 
 
3. Find solutions in radiative-convective equilibrium with moist adiabatic adjustment 

and their dependency on the total optical depth τs. Assume Ts=T0 and that the 
radiative cooling in the atmospheric is given by the Newtonian cooling 
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where TR is a solution in the gray radiative equilibrium given by Problem 1, and τR 
is the radiative damping time.  



For the energy balance at the surface, the energy inflow from the atmosphere to 
the surface is assumed to be unchanged as radiative equilibrium. Thus, the sum of 

the sensible and latent heat flux at the surface is given by ( )4
0
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where TRs is the surface temperature in the gray radiative equilibrium obtained by 
Problem 1. The energy balance is given by  
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where ps is pressure at the bottom of the atmosphere and pT is pressure at the 
tropopause.  

 
4. Obtain dependencies of the specific humidity at the bottom of the atmosphere 0q , 

precipitation P, and convective mass flux M in the radiative-convective equilibrium. 

These are respectively given by ( )sTrqq *
0 =  where r = 80 % is relative humidity at 

the bottom of the atmosphere, LFP /=  where L is latent heat, and  
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Problem B：Discuss solutions of the Walker circulation in terms of fractional area of the 
upward motion region. Refer to Bretherton and Sobel (2002) for notations. 

In the non-dimensional range 0 ≤ x ≤ 1 along the equator, the sea surface 
temperature is given by xSSTTT ss πcos0 ∆+=  [K] , and the upward motion is 
assumed to exist in the range 0 ≤ x ≤ fc. The water balance equation, the temperature 
balance equation, and the continuity equation are given by 
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respectively, where Ms = Ms0 + Msp T、Mq = Mq0 + Mqp q, and Ms0 = 3017 J/kg, Mq0 = 2431 
J/kg for the radiative-convective equilibrium, and Msp = 0.0435, Mqp = 0.0507. The Weak 
Temperature Gradient assumption is applicable where T is independent of x, and the 
Strict Quasi-Equilibrium approximation T=q holds in the convective region 0 ≤ x ≤ fc. 



The surface latent heat flux E, latent heat release due to condensation P, and radiative 
cooling R are given as follows (units are the same as energy flux W/m2): 
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where E0 =125 W/m2, 28== psq Cca γ W/m2/K, and r = 0.2. 

1. Solve the water balance equation, and find distributions of Mq for some values of 
SST∆ . 

2. Obtain dependencies of fc as a function of SST∆ . 
 
Problem C：Discuss the Hadley circulation in the axisymmetric framework. Denote ϕ  

as latitude, and the sea surface temperature is given by n
sss TTT 00 sinsin ϕϕ −∆−=  

[K]. ITCZ is concentrated near the latitude 0ϕ , and the downward mass flux Md [kg/m2] 

is constant within the Hadley circulation region except for ITCZ. The meridional flows 

of the Hadley circulation are confined near z = 0 and H. Use 3000 =sT  K、 40=∆ sT  K、

H = 15 km. For the other assumptions, refer to Satoh (1994) and Held and Hou (1980). 
 
1. Obtain the latitudinal distribution of the zonal winds near z = H in the Hadley 

circulation by assuming that the zonal wind is zero at 0ϕ . 

2. Determine the extents of the Hadley circulation in the northern and southern 
hemispheres for n =2 as functions of 0ϕ . 

3. Solve the angular momentum balance in the Hadley circulation 
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to obtain the latitudinal distribution of the zonal winds near z = 0, u(0), by 
estimating a typical value of C. 

4. Discuss characteristics of the Hadley circulations for n = 3 and 4. 
 
Problem D：Using a time-dependent 2-column model following Section 5b of Satoh and 
Hayashi (1992), obtain vertical profiles of time-averaged convective mass flux Mc (z) by 
specifying the radiative cooling profile Qrad(z). Assume that the upward motion region is 



moist adiabatic and is saturated from the surface to the neutral level at zN. The surface 
temperature is Ts = 300 K, and the temperature at the bottom of the upward motion 

region is equal to Ts . The neutral level zN is the first height where density of the upward 
motion region becomes the same as that of the downward motion region: 
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u zz ρρ = 、 ( ) ( )zz du ρρ <  ( Nzz <<0 ). 

The equations for specific humidity and temperature in the downward motion region 
are given as follows. For z > zN, 
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and for z < zN, 
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and within a thin layer near the neutral level zzz N ∆<− ,  
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where water vaper and energy are transported from the upward motion region to the 
downward motion region. Convective mass flux is given by 
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For simplicity, Qrad(z) is time independent and constant irrespective of height 

Tzz <<0  (zT = 15 km) such that Qrad(z) = 2 K/day. Discretize in the vertical with the 
vertical resolution about z∆ = 100 m, and integrate in time. Determine the solutions for 
C = 10-3, 10-4, 10-5 kg/m3. 
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