Ohno, T., Satoh, M., and Noda, A. T. (2019)
Fine vertical resolution radiative-convective equilibrium experiments: Roles of turbulent mixing on the high-cloud response to sea surface temperatures.
J. Adv. Model. Earth Syst., 11, 1637-1654,
https://doi.org/10.1029/2019MS001704 (accepted 2019/05/10; online published 2019/05/16).
Ohno, T., Satoh, M. (2018)
Roles of cloud microphysics on cloud responses to sea surface temperatures in radiative-convective equilibrium experiments using a high-resolution global nonhydrostatic model.
J. Adv. Model. Earth Syst., 10, 1970-1989. https://doi.org/10.1029/2018MS001386 (accepted 2018/06/30; first published 2018/07/10).
Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., Ohno, T. (2018)
Radiative-Convective Equilibrium Model Intercomparison Project.
Geosci. Model Dev., 11, 793-813,
https://doi.org/10.5194/gmd-11-793-2018
(Accepted for review: 15 Sep 2017; Discussion started: 19 Sep 2017; accepted for GMD, 2018/01/24; online published 2018/03/02).
Ohno, T., Satoh, M., Yamada, Y. (2016)
Warm cores, eyewall slopes, and intensities of tropical cyclones simulated by a 7-km-mesh global nonhydrostatic model.
J. Atmos. Sci., accepted, http://dx.doi.org/10.1175/JAS-D-15-0318.1 (2016/05/26).
Ohno, T., Satoh, M. (2015)
On the warm core of the tropical cyclone formed near the tropopause.
J. Atmos. Sci., 72, 551-571. http://dx.doi.org/10.1175/JAS-D-14-0078.1
博士論文 "An improvement of a single-moment bulk microphysics
scheme for mesoscale convective systems using a satellite simulator"
「メソ対流システムを対象とした人工衛星シミュレ―タ―を利用したシングルバルク雲微物理スキームの改良」(2014.9); アブストラクト(2013.11)
Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., Kubota, T., Oki, R. (2021)
Assessments of Doppler velocity error of EarthCARE Cloud Profiling Radar using global cloud system resolving simulation: Effects of Doppler broadening and folding.
The IEEE Transactions on Geoscience and Remote Sensing
(Accepted: 17 Feb. 2021). https://doi.org/10.1109/TGRS.2021.3060828
Seiki, T., Roh, W. (2020)
Improvements in super-cooled liquid water simulations of low-level mixed-phase clouds over the Southern Ocean using a single-column model.
J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0266.1 (accepted: 2020/08/19; on line published: 2020/08/25).
Roh, W., Satoh, M., Hashino, T., Okamoto, H., Seiki, T. (2020)
Evaluations of the thermodynamic phases of clouds in a cloud system-resolving model using CALIPSO and a satellite simulator over the Southern Ocean.
J. Atmos. Sci., https://doi.org/10.1029/2020MS002138 (accepted 2020/07/27; online published 2020/08/06).
Kuba, N., Seiki, T., Suzuki, L, Roh, W., and Satoh, M. (2020)
Evaluation of rain microphysics using a radar simulator and numerical models: Comparison of two-moment bulk and spectral bin cloud microphysics schemes.
J. Adv. Model. Earth Syst., 12, e2019MS001891, https://doi.org/10.1029/2019MS001891 (accepted 2020/03/02; published 2020/03/10).
Roh, W., Satoh, M. (2018)
Extension of a multisensor satellite radiance-based evaluation for cloud system resolving models.
J. Meteor. Soc. Japan, 96, 55-63, doi:10.2151/jmsj.2018-002 (2017/09/17 accept).
Roh, W., Satoh, M., Nasuno, T. (2017)
Improvement of a cloud microphysics scheme for a global nonhydrostatic model using TRMM and a satellite simulator.
J. Atmos. Sci., 74, 167-184, http://dx.doi.org/10.1175/JAS-D-16-0027.1
(2016/10/05; 2017/01/04 published)
Roh, W., and Satoh, M. (2014)
Evaluation of precipitating hydrometeor parameterizations in a
single-moment bulk microphysics scheme for deep convective systems over
the tropical open ocean. J. Atmos. Sci., 71, 2654-2673.
http://dx.doi.org/10.1175/JAS-D-13-0252.1
博士論文 "A study on the sea surface temperature dependence of large scale and mesoscale convective self aggregations"
(大規模場およびメソスケールにおける対流自己組織化の海面水温依存性に関する研究)(2023.10)
Matsugishi, S., Miura, H., Nasuno, T., and Satoh, M. (2020)
Impact of latent heat flux modifications on the reproduction of a Madden–Julian oscillation event during the 2015 Pre-YMC campaign using a global cloud-system-resolving model.
SOLA, 16A, 12-18, https://doi.org/10.2151/sola.16A-003 (accepted 2020/05/04; EOR published 2020/05/21).
博士論文 "Improvements of the vertical structure of precipitation systems in the numerical weather prediction models by advancement of physical processes schemes using remote sensing observations as reference"
(リモートセンシング観測データを参照値として用いた物理過程スキームの高度化による数値予報モデルでの降水システムの鉛直構造の改良)(2023.12)
Ikuta, Y., Sawada, M., Satoh, M. (2022)
Determining the impact of boundary layer schemes on the secondary circulation of Typhoon FAXAI using radar observations in the gray zone.
J. Atmos. Sci., https://doi.org/10.1175/JAS-D-22-0169.1
(accepted 14 Dec 2022;: Online Publication: 22 Dec 2022).
Satoh, M., Matsugishi, S., Roh, W., Ikuta, Y., Kuba, N., Seiki, T., Hashino, T., Okamoto, H. (2022)
Evaluation of cloud and precipitation processes in regional and global models with ULTIMATE (ULTra-sIte for Measuring Atmosphere of Tokyo metropolitan Environment): A case study using the dual-polarization Doppler weather radars.
Progress in Earth and Planetary Science, 9, 41. doi:10.1186/s40645-022-00511-5 (accepted 2022/09/27).
Ikuta, Y., Satoh, M., Sawada, M., Kusabiraki, H., Kubota, T. (2021)
Improvement of the cloud microphysics scheme of the mesoscale model at the Japan Meteorological Agency using space-borne radar and microwave imager of the Global Precipitation Measurement as reference.
Mon. Wea. Rev., 149, 3803-3819, https://doi.org/10.1175/MWR-D-21-0066.1 (accepted 2021/09/01; published online 2021/09/09).
日比野英美 秘書/研究スタッフ Hidemi Hibino (hibino-h), 2018.4-
海洋大気力学分野
研究室を離れた人, 卒業生
Bjorn Stevens 招聘教授 (bjorn.stevens at mpimet.mpg.de)
Guest Professor 2018.11.26-2019.1.6, 2023.3.31-2023.5.14
Max-Planck-Institute for Meteorology, Director; University of Hamburg, Professor
Kevin Hamilton 客員教授 (kevin at hawaii.edu)
Guest Professor 2015.4.1-6.25.; 2017.4.1-6.5
retired professor and Director, International Pacific Research Center, University of Hawaii
Terasaki, K., Sawada, M., Miyoshi, T. (2015)
Local Ensemble Transform Kalman Filter Experiments with the
Nonhydrostatic Icosahedral Atmospheric Model NICAM. SOLA, 11, 23-26.
http://dx.doi.org/10.2151/sola.2015-006
Nakano, M., Sawada, M., Nasuno, T., Satoh, M. (2015)
Intraseasonal variability and tropical cyclogenesis in the
western North Pacific simulated by a global nonhydrostatic atmospheric
model. Geophys. Res. Lett., 42, DOI:10.1002/2014GL062479.
Matsuno, T., Satoh, M., Tomita, H., Nasuno, T., Iga, S.,
Miura, H., Noda, A. T., Oouchi, K., Sato, T., Fudeyasu, H., Yanase W.
(2011) Cloud-cluster-resolving global atmosphere modeling - A
challenge for the new age of tropical meteorology. In "The Global
Monsoon System, Research and Forecast", 2nd Edition, edited by
Chih-Pei Chang, Yihui Ding, Ngar-Cheung Lau, Richard H Johnson, Bin
Wang, and Tetsuzo Yasunari, World Scientific Pub Co Inc, pp. 608.
Yanase, W., Taniguchi, H., Satoh, M. (2010)
The genesis of tropical cyclone Nargis (2008): Environmental modulation
and numerical predictability. J. Meteor. Soc. Japan, 88, 497-519.
doi:10.2151/jmsj.2010-314.
Taniguchi, H., Yanase, W., Satoh, M. (2010)
Ensemble simulation of cyclone Nargis by a Global
Cloud-system-resolving Model -- modulation of cyclogenesis by the
Madden-Julian Oscillation. J. Meteor. Soc. Japan, 88, 571-591.
doi:10.2151/jmsj.2010-317.
Sato, T., Miura, H., Satoh, M. (2007)
Spring diurnal cycle of clouds over Tibetan Plateau: global
cloud-resolving simulations and satellite observations.
Geophys. Res. Lett., 34, L18816, doi:10.1029/2007GL030782.
Kuba, N., Seiki, T., Suzuki, L, Roh, W., and Satoh, M. (2020)
Evaluation of rain microphysics using a radar simulator and numerical models: Comparison of two-moment bulk and spectral bin cloud microphysics schemes.
J. Adv. Model. Earth Syst., 12, e2019MS001891, https://doi.org/10.1029/2019MS001891 (accepted 2020/03/02; published 2020/03/10).
Kuba, N., Suzuki, K., Hashino, T., Satoh, M., Seiki, T. (2015)
Numerical experiments to analyze cloud microphysical processes
depicted in vertical profiles of radar reflectivity of warm clouds.
J. Atmos. Sci., accepted. http://dx.doi.org/10.1175/JAS-D-15-0053.1
(2015/8/6)
Kuba, N., Hashino, T., Satoh, M., and Suzuki, K. (2014)
Relationships between layer-mean radar reflectivity and columnar
effective radius of warm cloud: Numerical study using a cloud
microphysical bin model. J. Geophys. Res., 119,
DOI:10.1002/2013JD020276.
Chen, Y-W., Seiki, T., Kodama, C., Satoh, M., Noda, A. T. (2018)
Impact of precipitating ice hydrometeors on longwave radiative effect estimated by a global cloud-system resolving model.
J. Adv. Model. Earth Syst., 10, doi:10.1002/2017MS001180 (2018/01/18).
Chen, Y.-W., Seiki, T., Kodama, C., Satoh, M., Noda, A. T., Yamada, Y. (2016) High cloud responses to global warming simulated by two different cloud microphysics schemes implemented in the nonhydrostatic icosahedral atmospheric model (NICAM). J. Climate, 29, 5949-5964. http://dx.doi.org/10.1175/JCLI-D-15-0668.1 (2016/05/11).
Inoue, T., Satoh, M., Hagihara, Y., Miura, H., and Schmetz, J. (2010)
Comparison of high-level clouds represented in a global cloud system
resolving model with CALIPSO/CloudSat and geostationary satellite
observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.
Special collections in AGU Journals "Aerosol and Cloud Studies From
CALIPSO and the A-Train".
Kubokawa, H., Inoue, T., Satoh, M. (2014)
Evaluation of the tourism climate index over Japan in a future climate
using a statistical downscaling method. J. Meteor. Soc. Japan, 92,
37-54. DOI:10.2151/jmsj.2014-103.
Kubokawa, H., Fujiwara, M., Nasuno, T., Satoh, M. (2010)
Analysis of the tropical tropopause layer using the Nonhydrostatic
ICosahedral Atmospheric Model (NICAM): 1. Aqua-planet experiments. J.
Geophys. Res., 115, D08102, doi:10.1029/2009JD012686.
金丸佳矢 特任研究員 Kaya Kanemaru (kanemaru), 2017.2-2019.3
Kuba, N., Suzuki, K., Hashino, T., Satoh, M., Seiki, T. (2015)
Numerical experiments to analyze cloud microphysical processes
depicted in vertical profiles of radar reflectivity of warm clouds.
J. Atmos. Sci., 72, 4509-4528. http://dx.doi.org/10.1175/JAS-D-15-0053.1 (2015/8/6)
Kuba, N., Hashino, T., Satoh, M., and Suzuki, K. (2014)
Relationships between layer-mean radar reflectivity and columnar
effective radius of warm cloud: Numerical study using a cloud
microphysical bin model. J. Geophys. Res., 119,
DOI:10.1002/2013JD020276.
Chen, Y-W., Seiki, T., Kodama, C., Satoh, M., Noda, A. T. (2018)
Impact of precipitating ice hydrometeors on longwave radiative effect estimated by a global cloud-system resolving model.
J. Adv. Model. Earth Syst., 10, 284-296, https://doi.org/10.1002/2017MS001180 (2018/01/18).
Noda, A. T., Seiki, T., Satoh, M., Yamada, Y. (2016)
High cloud size dependency in the applicability of the fixed anvil
temperature hypothesis using global non-hydrostatic simulations.
Geophys. Res. Lett., 43, 2307-2314, DOI:10.1002/2016GL067742.
(2016/02/16)
Kuba, N., Suzuki, K., Hashino, T., Satoh, M., Seiki, T. (2015)
Numerical experiments to analyze cloud microphysical processes
depicted in vertical profiles of radar reflectivity of warm clouds.
J. Atmos. Sci., 72, 4509-4528.
http://dx.doi.org/10.1175/JAS-D-15-0053.1 (2015/8/6)
Seiki, T., Kodama, C., Noda, A. T., Satoh, M. (2015)
Improvements in global cloud-system resolving simulations by using a double-moment bulk cloud microphysics scheme.
J. Climate, 28, 2405-2419. http://dx.doi.org/10.1175/JCLI-D-14-00241.1
Seiki, T., Satoh, M., Tomita, H., Nakajima, T. (2014)
Simultaneous evaluation of ice cloud microphysics and non-sphericity
of the cloud optical properties using hydrometeor video sonde and
radiometer sonde in-situ observations. J. Geophys. Res. Atmos., 119,
6681-6701. doi:10.1002/2013JD021086.
Seiki, T. and Nakajima, T. (2013)
Aerosol Effects of the Condensation Process on a Convective Cloud
Simulation. J. Atmos. Sci., 71, 833-853.
http://dx.doi.org/10.1175/JAS-D-12-0195.1.
Takasuka, D., Satoh, M. (2021)
Diversity of the Madden–Julian Oscillation: Initiation Region Modulated by the Interaction Between the Intraseasonal and Interannual Variabilities.
J. Clim., 34, 2297–2318. https://doi.org/10.1186/s40645-020-00397-1
(accepted 2021/01/22; Published-online 2021/02/01).
Takasuka, D., M. Satoh (2020)
Dynamical Roles of Mixed Rossby-Gravity Waves in Driving Convective Initiation and Propagation of the Madden-Julian Oscillation: General Views.
J. Atmos. Sci., 77, 4211–4231, https://doi.org/10.1175/JAS-D-20-0050.1
(accepted: 2020/09/17; on line published: 2020/10/01; Print Publication 2020/12/01).
Takasuka, D., Satoh, M., Yokoi, S. (2019)
Observational evidence of mixed Rossby-gravity waves as a driving force for the MJO convective initiation and propagation.
Geophys. Res. Lett., 46, 5546-5555. https://doi.org/10.1029/2019GL083108
(accepted 2019/04/21; First published: 2019/04/25).
Takasuka, D., Satoh, M., Miyakawa, T., and Miura, H. (2018)
Initiation Processes of the Tropical Intraseasonal Variability Simulated in an Aqua-planet Experiment: What is the Intrinsic Mechanism for MJO Onset?
J. Adv. Model. Earth Syst., 10, 1047-1073.
https://doi.org/10.1002/2017MS001243 (2018/03/27)
修士論文「水惑星実験におけるマッデンジュリアン振動の発生・東進機構」
(Initiation and eastward propagation mechanisms of the Madden Julian oscillation in aqua-planet experiments) (2017.2) アブストラクト
博士論文 "Response of tropical cyclone structure to a global warming
using a high-resolution global nonhydrostatic model"
「高解像度全球非静力学モデルを用いた熱帯低気圧の温暖化による構造変化に関する研究」 (2016.2) アブストラクト(2015.5)
Yamada, Y., Kodama, C., Satoh, M., Nakano, M., Nasuno, T., Sugi, M. (2019)
High-resolution Ensemble Simulations of Intense Tropical Cyclones and Their Internal Variability During the El Ninos of 1997 and 2015.
Geophys. Res. Lett., 46, 7592-7601, https://doi.org/10.1029/2019GL082086 (accepted 2019/05/02; EOR published 2019/05/08; Published online 2019/07/03).
Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., Nasuno , T. (2017)
Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model.
J. Climate, 30, 9703-9724, https://doi.org/10.1175/JCLI-D-17-0068.1, accepted (2017/07/25), EOR released (2017/09/14), online published (2017/11/08).
Ohno, T., Satoh, M., Yamada, Y. (2016)
Warm cores, eyewall slopes, and intensities of tropical cyclones simulated by a 7-km-mesh global nonhydrostatic model.
J. Atmos. Sci., 73, 4289-4309, http://dx.doi.org/10.1175/JAS-D-15-0318.1 (2016/05/26).
Noda, A. T., Seiki, T., Satoh, M., Yamada, Y. (2016)
High cloud size dependency in the applicability of the fixed anvil
temperature hypothesis using global non-hydrostatic simulations.
Geophys. Res. Lett., 43, 2307-2314, DOI:10.1002/2016GL067742.
(2016/02/16)
Yamada, Y. and Satoh, M. (2013)
Response of ice and liquid water paths of tropical cyclones to global
warming simulated by a global nonhydrostatic model with explicit cloud
microphysics. J. Climate, 26, 9931-9945.
http://dx.doi.org/10.1175/JCLI-D-13-00182.1.
Yamada, Y., Oouchi, K., Satoh, M., Noda, A. T., Tomita, H. (2012)
Sensitivity of tropical cyclones to large- scale environment in a
global non-hydrostatic model with explicit cloud microphysics. In
"Cyclones: Formation, Triggers and Control", Eds. K. Oouchi and H.
Fudeyasu, Nova Science Publishers, Inc., Chapter 7, 145-159.
Arakane, S., Satoh, M., Yanase, W. (2014)
The Excitation of the Deep Convection to the North of Tropical Storm
Bebinca (2006). J. Meteor. Soc. Japan, 92, 141-161.
DOI:10.2151/jmsj.2014-201.
Kodama, S., Satoh, M. (2022)
Statistical analysis of remote precipitation in Japan caused by typhoons in September.
J. Meteor. Soc. Japan, 100, 893-911, https://doi.org/10.2151/jmsj.2022-046 (accepted 2022/06/27).
Nishikawa, Y., Satoh, M. (2016)
A conserved topographical representation scheme using a thin-wall approximation in z-coordinates.
SOLA, 12, 232-236, doi:10.2151/sola.2016-046. (2016/07/08)
修士論文「数値実験による台風二重壁雲の形成メカニズム―対流圏中上層からの乾燥空気の流入および蒸発・昇華による冷却の役割―」 [Formation Mechanism of TC Secondary Eyewall by Numerical Experiments: Role of Dry Air Inflow from the Middle and Upper Troposphere and Cooling by Evaporation and Sublimation](20230.2) アブストラクト
Kasami, K., Satoh, M. (2024)
Mechanism of secondary eyewall formation in tropical cyclones revealed by sensitivity experiments on the mesoscale descending inflow.
SOLA, 20, 62-68, doi:10.2151/sola.2024-009 (accepted 2024/01/30; published 2024/03/15).
池端耕輔 Kosuke Ikehata (ikehata) 2019.4-2021.3
修士論文「台風の種および台風への生存率に関する気候特性の解析」(2021.2)
"Climatology of Tropical Cyclone Seeds and Survival Rates to Tropical Storms"
アブストラクト
Ikehata, K. and Satoh, M. (2021)
Climatology of tropical cyclone seed frequency and survival rate in tropical cyclones.
Geophys. Res. Lett., 48, e2021GL093626. https://doi.org/10.1029/2021GL093626 (accepted 2021/09/09; first published 2021/09/13).
This paper is cited by AGU EOS:
Learn, J. (2021), Cyclone “seed” survival affects hurricane season intensity, Eos, 102, https://doi.org/10.1029/2021EO210607.
後藤優太 Yuta Goto (goto-y), 2019.4-2021.3
気象庁(2021.4)
修士論文「東アジア域の線状降水帯の統計解析」(2021.2)
'Statistical analysis of "senjo-kousuitai" in East Asia'
アブストラクト
Satoh, M., and Kitao, Y. (2013)
Numerical examination of the diurnal variation of summer precipitation
over southern China. SOLA, 9, 130-134, doi:10.2151/sola.2013-029.
Satoh, M., Matsuda, Y. (2009)
Statistics on high-cloud areas and their sensitivities to cloud
microphysics using single-cloud experiments. J. Atmos. Sci., 66,
2659-2677, DOI:10.1175/2009JAS2948.1.
Satoh, M., Hosotani, K. (2023)
Characteristics analysis of the senjo-kousuitai conditions in the Kyushu region in early July: The case of the July 2020 heavy rainfall event.
SOLA, 19A, 1-8 (accepted, 2022/12/13), doi:10.2151/sola.19A-001.
Jinno, T., Miyakawa, T., Satoh, M. (2019)
NICAM predictability of the monsoon gyre over the western North Pacific during August 2016.
J. Meteor. Soc. Japan, 97, doi:10.2151/jmsj.2019-017 (accepted 2018/11/18).
中村雄飛 B4 (2015年度後期) 2015.10-2016.2
高薮研 M (2016.4-)
特別研究「台風18号の発生と鬼怒川豪雨について」(2016.2)
Nakamura, Y., T. Miyakawa, M. Satoh (2020)
The role of Typhoon Kilo (T1517) in the Kanto-Tohoku heavy rainfall event in Japan in September 2015.
J. Meteor. Soc. Japan., 98, 915-926. https://doi.org/10.2151/jmsj.2020-046 (accepted 2020/05/13; EOR 2020/06/02).